Connect with us

Tech

“李老师”口述:如何成为推特上中国抗议信息的聚集地

Published

on

How Twitter’s “Teacher Li” became the central hub of China protest information


Editor’s note: This is a translation of a story about a Chinese painter based in Italy who became a critical source of information for many in China during recent protests against the country’s zero-covid policy. Find the English language version here.

过去一周,随着针对中国新冠防疫政策的抗议席卷了社交媒体,一个推特账号@李老师不是你老师 变成了各种相关信息来源的“集散地”。中国各地民众纷纷通过私信发来抗议视频和实时消息,而该账号帮投稿人隐去身份,匿名将这些消息发布出来。

这个账户背后只有一个人:李(大家称他为李老师),出于安全考虑,他要求只透露姓氏。他是一位居住在意大利的中国画家,且从未在新闻行业工作过,但这并没有阻止他把自己的推特账号变成了一个单人值守的新闻直播间。

针对新冠清零政策的抗议活动在 11 月的最后一个周末达到了高峰,李老师每秒钟都会收到十几条私信,他也在尽可能在收到投稿的一瞬间分辨、过滤掉不实信息。尽管在过去的一年里,他一直在发布关注者们的匿名私信,但这对他来说,也是一次完全不同的经历。

长期以来,他一直在网上关注并谈论中国的社会问题。2021 年的时候,他开始在微博上收到私信,这些人担心暴露自己的身份,希望通过他将这些信息发布出去。

但是后来,他发布的消息开始被审查和删帖;到今年2月,他的账户被封禁。之后的两个月中,他又有 49 个账户陆续被禁。但他的关注者们大方地让他使用自己的手机号去注册更多的账号(来发布信息)。今年 4 月,他被微博禁止访问,于是辗转到了推特。也正是在推特上,他收到了大量国际账户以及翻墙访问推特的中国用户的关注。

上周,郑州富士康工厂的工人与管理层爆发冲突,李老师开始通过中国社交媒体和他的关注者提供的信息来跟踪事态走向。那一晚,他只休息了 3 个小时。

到周末,中国的大城市里爆发了更多的抗议活动。李老师又一次开始发布实时抗议视频录像,以期一方面帮助在中国国内的人了解信息,来决定是否要参与其中;另一方面告诉身处海外的人们,中国正在发生的事情。“让大家感觉,这一秒我虽然在世界各地,但是这件事情正在发生,而我正在看,”李老师说。

他的推特帐户现在已经成为抗议活动信息的集散地,仅在过去一周就吸引了超过 60 万名关注者。

但是他也因为所做的事,承受着代价:在中国的社交媒体平台(如微博、微信等)上提及他的账号名称会被审查。他也在私信中收到死亡威胁,并且警方已经去拜访了他在中国的家。

但在焦虑之中又混杂着解放和自由的感觉,李老师觉得,他自己终于可以毫无恐惧地在社交媒体上直言习近平了。他还开玩笑说,他的推特头像是一只猫的涂鸦,但现在这个涂鸦恐怕已经成为了最著名也最危险的一只猫。

在上周早些时候的一次长谈中,李老师向我描述了他正在做的事以及他承受的巨大压力,也解释了要保持客观的难处所在。他所做的事占用了他几乎所有的非休息时间,后来他不得不强迫自己在周一的时候休息,这也促成了一次奇遇。

以下,是李老师本人讲述的他的故事。本文后续内容经过了轻微改动和重新组织,以保证表达清晰。——Zeyi Yang

恐惧者的传声筒

这个账号的话,其实本质上来说,它和很多的推特的普通用户是一样的,就是发一些关于生活的话题、关于自己专业方面的一些话题,然后当然也包括社会的一些议题。

但是这个账号它其实还承载着另外一个功能。我也不知道从什么时候开始,渐渐地我开始收到私信投稿,大家会发一些正在发生的事情或者是他们自己的事情,然后希望我帮他们发出来。我觉得这个可能也是中国互联网上,或者说是习近平上台以后,这种越来越强烈的网络管制或者说言论管制的情况下,开始衍生出来的一种情况。大家不敢自己直接在网上去说这些东西,哪怕是匿名的,他们也不敢去说。但是他们又想要表达,所以他们希望有别人来替他们说。

在微博上也是一样的,我可能最开始只有几千个、一万个粉丝,然后渐渐地大家发现这个人他可以说话,然后就来找我。就是从徐州丰县“八孩母亲”事件开始,当时我帮一个人去发表内容(他想找他的姐姐),那个内容在微博上应该是转了三万多次,然后我的号就炸了。我的号炸了之后我就继续建新的账号,然后在那几个月里基本上就是一直被炸,大概两个月时间我炸了五十个号。 我最快的时候是十分钟炸一个。你只要一炸我的号,我就会立刻建一个。

我的粉丝,我也不知道他们怎么就可以立刻找到我,然后瞬间一万多人就又关注回来。然后直到是他们好像找到那个卖号的网站,把那个网站炸了,我就再也找不到账号了。

当时在那个过程里,我其实是很感动的,因为在微博上你是需要手机号来验证的,但大量的网友他们把手机号借给我,说:“没事,李老师,你就用我手机号来验证,没关系。”也是很让我感动的事情。后来就彻底没有号了,我就没办法,只能来推特。

我的推特账号是 2020 年建的,但是我其实是今年四月份才转到推特。从一开始,这个最新的消息都会(有粉丝)发给我,我不知道为什么,就是总有人他们就在新闻发生现场,然后就可以立刻发给我,包括(十月份)上海举白色横幅的那件事情。慢慢地,粉丝数就多起来了。

我在报导这个富士康事件之前,大概有 14 万粉丝;报导完涨到了 19 万;现在是多少万我已经不知道了。(编辑注:采访时李老师的推特账号有 67 万粉丝,截止到发稿时已超过 78 万。)

单人扛起的新闻直播间

这几天的话,我大概只能睡五个小时吧,然后其他的时间就全部在(推特)上面。 没有其他人,只有我自己,连我女朋友都没有参与。

其实我在线时间最长的一天不是这两天,是富士康冲突那天。因为那个事情就是(变化)太快了,他们一直不停的话,我也没法停。我就没有想过说,反正这事和自己没关系,要不就睡觉去吧,没有想过。

乌鲁木齐火灾这件事其实引发了大家的一个共情。火灾确实是每个人心里的一个痛,因为每个人都被封在家里出不去过。而且包括之前每一次类似的社会事件,无论这件事情和政府有没有关系,它都会把(舆论)封锁起来。那么在一次又一次的闭嘴当中,人们就开始愤怒了。总是有一个导火线,这个导火线到底是哪一件事,哪怕不是今天,也可能是明天,或者后天。

我本来以为(11月)26号晚上的新疆抗议是载入历史的一页,结果那只是历史的一个开端。

特别是当抗议者喊出四通桥的那些口号的时候,我心里就是:完了,人们在上海市中心去喊这些口号,这会是一个非常非常严重的事情。那这个时候,就必须用一个中立、客观的态度去记录它,因为如果不这样的话,就是在推特上,可能很快它也会消失掉。我的想法就是,我要立刻去接过这个接力棒,然后就不自觉地就开始了。

紧接着就是一种很难说的感觉,就是大家所有人全部都汇聚过来,各种各样、天南地北的信息就汇聚过来,然后告诉你:嘿,这里发生了什么;嘿,那里发生了什么;你知道吗,我们广州也这样了;我现在在武汉,武汉现在这样;我现在在北京,然后我正跟着大部队在一起走……

就是突然所有的实时信息都涌到我这里,那种感觉不知道怎么去形容。 但是也已经没有时间去想了。心跳得特别得快,然后手和脑子在不停地去切换几个软件。因为你知道推特是没有办法直接从网站上存视频的,所以不停地切换软件、剪辑视频、导出,然后发到推特上。(编辑注: 李老师会为视频添加字幕,隐去原作者信息,以及把多个短视频编辑在一起)到后边就已经没有时间去剪辑视频了。一个十二秒的微信视频,他拍了发过来,然后我就会直接用,就是这样,没有时间去想。

(私信频率)最高的时候应该是星期日下午六点左右,当时是中国的五个大城市:北京、上海、成都、武汉、广州,同时都有非常多的人在街上。所以我基本上每秒都能收到十几条消息。到最后我已经没法去筛选信息了,就是我看见,我点开,然后这个事情值得发,我就发。

全国各地的网友都在跟我说这个实时情况。为了不让更多的人遭受危险,他们亲自去(抗议)现场,然后告诉我现场的情况。包括有网友骑着共享单车,经过南京总统府,然后一边骑,一边拍,拍下来以后告诉我说南京这边的情况,然后告诉我一定要让大家小心。我觉得确实是一个蛮感动的事情。

到目前为止,渐渐地我就成为了一个“演播厅主播”,就是说全国各地的现场“记者”不断地给我发来反馈。比如说星期一在杭州,有五六个人同时在不断地给我发最新的消息,当然中间有段时间停了, 因为清场的时候大家全部都在逃。

保持客观的重要性

在推特上会有非常非常多的添油加醋的消息。从他们的角度他们认为这是对的,他们认为你必须最大限度地去引发大家的愤怒,然后才会有反抗。但是对我来说的话,我认为我们需要真实的信息,我们需要知道真正发生了什么,这是最重要的。如果说我们是为了情绪的话,那其实到最后我就真成“境外势力”了是吧?

如果说外网可以有一个渠道能够客观、实时、准确地去随时记录这些事,那么对于墙内的民众来说,他们就会笃定这件事。在现在这种非常极端的消息封锁的情况下, 有一个账号可以以几乎几秒钟一条的速度不断地去发布全国各地各种消息,其实对于大家来说,也是一种鼓励。

中国人从小跟着爱国主义长大,所以他们比较畏缩,或者说他们不太敢直接地去说一些内容或者直接去反对什么。其实大家在抗议中唱国歌、举红旗、举国旗,你必须得明白,中国人他就是爱国的,那么他们自然是带着这一份情怀来去向政府要求一些东西。所以他们愿意给我投稿,因为他们知道我是中立、客观、真实地在报道这件事情。但是其他人的话,他们不敢去投;万一真的就像国内说的,被境外势力利用了,是吧?

可以这样说,他们想要反对,但是又不是那么绝对的反对,他们希望有一个折中的点。那么我其实就是那个折中的点。发生的事情我会报导,但是我只报导事情,我不会多说一句。可能这就是为什么我成为这个中心,当然我成为这个中心也和我一直在发内容有关系。

所以我尽量做到有什么信息就报道什么信息,但是现在这件事很难完成,因为投稿实在太多了。可能一个事情,我需要几个不同角度的拍摄,我才能确认这件事情。比如说昨天晚上有传言武汉有枪击、成都有枪击、西安有枪击,但是我都没有找到可以去验证的视频,所以最后我都没有发。那么也因此,一些推特上的网友会认为我可能在故意地掩盖一些警方的错误。

所以现在有一些比较尴尬的情况,就是国内认为我在煽动这些事情,但是国外的人认为我是大外宣, 这就形成了一个非常矛盾的点。当你选择站在中间的时候,你肯定是承受了两边的压力,但是没关系。

应对混乱和虚假

而且我基本上就是没有时间思考,基本上就是几秒钟一条,几秒钟一条;然后消息又非常快、非常乱,还有发一些非常重复的视频。还有好多就直接从我这儿发出去的视频,然后他不知道从朋友圈什么地方,又发回来给我。可能这一条是北京、下一条是广州、下一条就是上海。他们又没办法马上知道我这个视频发没发,所以他又重新发给我。比如总是把前面可能 9 点的视频,然后他 12 点的时候又发给我,他以为这就是当时的情况。

可能今天晚上投稿给我最多的一个假视频,是一个警车开车在立交桥下碾人的视频,我应该看了有六、七十次吧,都说是这个四通桥底下或者怎么样,但其实它就是一个国外的视频。很多人是愿意相信这些视频的,(其实)他们就是愿意相信说发生了一个大新闻。

星期一上午我遭遇的比较大的危机就是,我不知道是谁,是不是(中国政府)的人,他们不断给我发假消息。就是有一些消息是真实发生但是地点不对的,然后有一些就直接看一眼就知道是假的的消息,可能他们希望从那个方面去打倒我吧。

虽然说在私信里面不断地有人希望我呼吁,不断地有人希望我去总结口号或者发布口号,或者发布让大家应该怎么怎么做,但是我一直没有突破那条线。因为我觉得每个人都有一个自己的“任务”,我的任务就是报道这件事情。如果说我突然加入进来(抗议)的话,我就等于是真的在指挥了,而我又并不在现场。如果说真正死了人的话,那血债其实就是算在我头上的,因为是我指挥他们去的。所以我认为不应该这样,我只能去报导。

但是我认为,最后这个帽子是肯定会扣在我头上,就是我不做这件事,我之后也会被认为在做这件事。

那么如果我始终能够保证独立性的话,那可能是一根蜡烛,可能是一根火炬,就是立在那里。

工作带来的精神压力

我刚刚研究生毕业,严格意义上就说,我也就是个刚毕业的学生对吧。所以就是突然被拉进这件事,让我突然成为了这样的一个角色。没有什么感觉。其实说来说去的,更多就是揪心吧,就是不知道自己会怎么样。也会很害怕,会不会哪天过马路,突然一个车往我这儿撞过来,制造一个交通事故啥的。更多的其实是当我关掉电脑以后,我会有一些担忧,但是当我坐在电脑前的时候,我又没有时间去考虑自己。

我主要觉得这很累,只有今天,我是强迫给自己放假的。平时的话,我基本上就是我坐在那,从开始,然后一直到结束,我几乎都不会站起来。

但是今天,我开始受到一些威胁,然后我心理压力会比较大。不得不怕,你看过那么多,你知道那么多。 所以今天,就是强制给我自己放了一个假。也不算什么放假吧,就是下去走了几圈,然后走的时间比较久。

今天也挺奇妙的。

我昨天晚上确实有收到死亡威胁,我不知道他是谁,他反正就是说“我们已经知道你在哪了,你就等着就好了。”我当时没来得及截图,因为那个消息很快就被其他的消息给盖住。我扫了一眼,那个消息立刻就没有了,但是当时真的就是心里就悬着。

然后今天早上我出门买猫粮的时候,我就在猫眼里反复查看,看有没有人在我家门外。然后一路上我都不断地在看马路上有没有这个站岗的人或者怎么样,他们是不是真得能找到我。回来的时候呢,就是楼梯里一直有异动,然后我就把东西放在门口,我就站在这个猫眼里等着看了十分钟,一直没有看到人。后来我心里想这样不是办法,我必须得让他走,我当时想的就是说,我直接开直播然后找他,然后让他走。其实结果就是没有人,是一只很小、很小、很小的猫,不知道为什么它突然躲在那里,然后我就把它抱回家了,现在我女朋友在喂它吃东西。反正就是觉得挺奇妙的。我正在考虑,要不要叫它乌鲁木齐。

我忘了是不是从习近平上台以来,一直都感觉特委屈。就是觉得这些年,就是为了能够说话,然后不断地、反复地审查自己,一直都小心翼翼。

然后昨天吧,突然就不怕了。没有时间去想这个事情,就一直在不断地发。简单来说就是,当他们喊出“习近平下台”的时候,突然就觉得无所谓了,我可以把这个事情给报道出来,这几个字我也敢打。他们敢喊,我也敢打,这样一个感觉。

你知道这三个字打出来要意味着什么,就是完全不同的这种概念。那一刻就是突然就感觉自己又死、又活、又解脱、又委曲,就是非常非常复杂的这种感觉。



Continue Reading

Tech

Why I became a TechTrekker

Published

on

group jumps into the air with snowy mountains in the background


My senior spring in high school, I decided to defer my MIT enrollment by a year. I had always planned to take a gap year, but after receiving the silver tube in the mail and seeing all my college-bound friends plan out their classes and dorm decor, I got cold feet. Every time I mentioned my plans, I was met with questions like “But what about school?” and “MIT is cool with this?”

Yeah. MIT totally is. Postponing your MIT start date is as simple as clicking a checkbox. 

Sofia Pronina (right) was among those who hiked to the Katla Glacier during this year’s TechTrek to Iceland.

COURTESY PHOTO

Now, having finished my first year of classes, I’m really grateful that I stuck with my decision to delay MIT, as I realized that having a full year of unstructured time is a gift. I could let my creative juices run. Pick up hobbies for fun. Do cool things like work at an AI startup and teach myself how to create latte art. My favorite part of the year, however, was backpacking across Europe. I traveled through Austria, Slovakia, Russia, Spain, France, the UK, Greece, Italy, Germany, Poland, Romania, and Hungary. 

Moreover, despite my fear that I’d be losing a valuable year, traveling turned out to be the most productive thing I could have done with my time. I got to explore different cultures, meet new people from all over the world, and gain unique perspectives that I couldn’t have gotten otherwise. My travels throughout Europe allowed me to leave my comfort zone and expand my understanding of the greater human experience. 

“In Iceland there’s less focus on hustle culture, and this relaxed approach to work-life balance ends up fostering creativity. This was a wild revelation to a bunch of MIT students.”

When I became a full-time student last fall, I realized that StartLabs, the premier undergraduate entrepreneurship club on campus, gives MIT undergrads a similar opportunity to expand their horizons and experience new things. I immediately signed up. At StartLabs, we host fireside chats and ideathons throughout the year. But our flagship event is our annual TechTrek over spring break. In previous years, StartLabs has gone on TechTrek trips to Germany, Switzerland, and Israel. On these fully funded trips, StartLabs members have visited and collaborated with industry leaders, incubators, startups, and academic institutions. They take these treks both to connect with the global startup sphere and to build closer relationships within the club itself.

Most important, however, the process of organizing the TechTrek is itself an expedited introduction to entrepreneurship. The trip is entirely planned by StartLabs members; we figure out travel logistics, find sponsors, and then discover ways to optimize our funding. 

two students soaking in a hot spring in Iceland

COURTESY PHOTO

In organizing this year’s trip to Iceland, we had to learn how to delegate roles to all the planners and how to maintain morale when making this trip a reality seemed to be an impossible task. We woke up extra early to take 6 a.m. calls with Icelandic founders and sponsors. We came up with options for different levels of sponsorship, used pattern recognition to deduce the email addresses of hundreds of potential contacts at organizations we wanted to visit, and all got scrappy with utilizing our LinkedIn connections.

And as any good entrepreneur must, we had to learn how to be lean and maximize our resources. To stretch our food budget, we planned all our incubator and company visits around lunchtime in hopes of getting fed, played human Tetris as we fit 16 people into a six-person Airbnb, and emailed grocery stores to get their nearly expired foods for a discount. We even made a deal with the local bus company to give us free tickets in exchange for a story post on our Instagram account. 

Continue Reading

Tech

The Download: spying keyboard software, and why boring AI is best

Published

on

🧠


This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

How ubiquitous keyboard software puts hundreds of millions of Chinese users at risk

For millions of Chinese people, the first software they download onto devices is always the same: a keyboard app. Yet few of them are aware that it may make everything they type vulnerable to spying eyes. 

QWERTY keyboards are inefficient as many Chinese characters share the same latinized spelling. As a result, many switch to smart, localized keyboard apps to save time and frustration. Today, over 800 million Chinese people use third-party keyboard apps on their PCs, laptops, and mobile phones. 

But a recent report by the Citizen Lab, a University of Toronto–affiliated research group, revealed that Sogou, one of the most popular Chinese keyboard apps, had a massive security loophole. Read the full story. 

—Zeyi Yang

Why we should all be rooting for boring AI

Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. It hopes they could improve intelligence and operational planning. 

But those might not be the right use cases, writes our senior AI reporter Melissa Heikkila. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases. 

Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. The DoD’s best bet is to apply generative AI to more mundane things like Excel, email, or word processing. Read the full story. 

This story is from The Algorithm, Melissa’s weekly newsletter giving you the inside track on all things AI. Sign up to receive it in your inbox every Monday.

The ice cores that will let us look 1.5 million years into the past

To better understand the role atmospheric carbon dioxide plays in Earth’s climate cycles, scientists have long turned to ice cores drilled in Antarctica, where snow layers accumulate and compact over hundreds of thousands of years, trapping samples of ancient air in a lattice of bubbles that serve as tiny time capsules. 

By analyzing those cores, scientists can connect greenhouse-gas concentrations with temperatures going back 800,000 years. Now, a new European-led initiative hopes to eventually retrieve the oldest core yet, dating back 1.5 million years. But that impressive feat is still only the first step. Once they’ve done that, they’ll have to figure out how they’re going to extract the air from the ice. Read the full story.

—Christian Elliott

This story is from the latest edition of our print magazine, set to go live tomorrow. Subscribe today for as low as $8/month to ensure you receive full access to the new Ethics issue and in-depth stories on experimental drugs, AI assisted warfare, microfinance, and more.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 How AI got dragged into the culture wars
Fears about ‘woke’ AI fundamentally misunderstand how it works. Yet they’re gaining traction. (The Guardian
+ Why it’s impossible to build an unbiased AI language model. (MIT Technology Review)
 
2 Researchers are racing to understand a new coronavirus variant 
It’s unlikely to be cause for concern, but it shows this virus still has plenty of tricks up its sleeve. (Nature)
Covid hasn’t entirely gone away—here’s where we stand. (MIT Technology Review)
+ Why we can’t afford to stop monitoring it. (Ars Technica)
 
3 How Hilary became such a monster storm
Much of it is down to unusually hot sea surface temperatures. (Wired $)
+ The era of simultaneous climate disasters is here to stay. (Axios)
People are donning cooling vests so they can work through the heat. (Wired $)
 
4 Brain privacy is set to become important 
Scientists are getting better at decoding our brain data. It’s surely only a matter of time before others want a peek. (The Atlantic $)
How your brain data could be used against you. (MIT Technology Review)
 
5 How Nvidia built such a big competitive advantage in AI chips
Today it accounts for 70% of all AI chip sales—and an even greater share for training generative models. (NYT $)
The chips it’s selling to China are less effective due to US export controls. (Ars Technica)
+ These simple design rules could turn the chip industry on its head. (MIT Technology Review)
 
6 Inside the complex world of dissociative identity disorder on TikTok 
Reducing stigma is great, but doctors fear people are self-diagnosing or even imitating the disorder. (The Verge)
 
7 What TikTok might have to give up to keep operating in the US
This shows just how hollow the authorities’ purported data-collection concerns really are. (Forbes)
 
8 Soldiers in Ukraine are playing World of Tanks on their phones
It’s eerily similar to the war they are themselves fighting, but they say it helps them to dissociate from the horror. (NYT $)
 
9 Conspiracy theorists are sharing mad ideas on what causes wildfires
But it’s all just a convoluted way to try to avoid having to tackle climate change. (Slate $)
 
10 Christie’s accidentally leaked the location of tons of valuable art 🖼📍
Seemingly thanks to the metadata that often automatically attaches to smartphone photos. (WP $)

Quote of the day

“Is it going to take people dying for something to move forward?”

—An anonymous air traffic controller warns that staffing shortages in their industry, plus other factors, are starting to threaten passenger safety, the New York Times reports.

The big story

Inside effective altruism, where the far future counts a lot more than the present

" "

VICTOR KERLOW

October 2022

Since its birth in the late 2000s, effective altruism has aimed to answer the question “How can those with means have the most impact on the world in a quantifiable way?”—and supplied methods for calculating the answer.

It’s no surprise that effective altruisms’ ideas have long faced criticism for reflecting white Western saviorism, alongside an avoidance of structural problems in favor of abstract math. And as believers pour even greater amounts of money into the movement’s increasingly sci-fi ideals, such charges are only intensifying. Read the full story.

—Rebecca Ackermann

We can still have nice things

A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)

+ Watch Andrew Scott’s electrifying reading of the 1965 commencement address ‘Choose One of Five’ by Edith Sampson.
+ Here’s how Metallica makes sure its live performances ROCK. ($)
+ Cannot deal with this utterly ludicrous wooden vehicle
+ Learn about a weird and wonderful new instrument called a harpejji.



Continue Reading

Tech

Why we should all be rooting for boring AI

Published

on

Why we should all be rooting for boring AI


This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

I’m back from a wholesome week off picking blueberries in a forest. So this story we published last week about the messy ethics of AI in warfare is just the antidote, bringing my blood pressure right back up again. 

Arthur Holland Michel does a great job looking at the complicated and nuanced ethical questions around warfare and the military’s increasing use of artificial-intelligence tools. There are myriad ways AI could fail catastrophically or be abused in conflict situations, and there don’t seem to be any real rules constraining it yet. Holland Michel’s story illustrates how little there is to hold people accountable when things go wrong.  

Last year I wrote about how the war in Ukraine kick-started a new boom in business for defense AI startups. The latest hype cycle has only added to that, as companies—and now the military too—race to embed generative AI in products and services. 

Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. 

The department sees tons of potential to “improve intelligence, operational planning, and administrative and business processes.” 

But Holland Michel’s story highlights why the first two use cases might be a bad idea. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.  

Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. Everyone agrees that humans should make the final call, but that is made harder by technology that acts unpredictably, especially in fast-moving conflict situations. 

Some worry that the people lowest on the hierarchy will pay the highest price when things go wrong: “In the event of an accident—regardless of whether the human was wrong, the computer was wrong, or they were wrong together—the person who made the ‘decision’ will absorb the blame and protect everyone else along the chain of command from the full impact of accountability,” Holland Michel writes. 

The only ones who seem likely to face no consequences when AI fails in war are the companies supplying the technology.

It helps companies when the rules the US has set to govern AI in warfare are mere recommendations, not laws. That makes it really hard to hold anyone accountable. Even the AI Act, the EU’s sweeping upcoming regulation for high-risk AI systems, exempts military uses, which arguably are the highest-risk applications of them all. 

While everyone is looking for exciting new uses for generative AI, I personally can’t wait for it to become boring. 

Amid early signs that people are starting to lose interest in the technology, companies might find that these sorts of tools are better suited for mundane, low-risk applications than solving humanity’s biggest problems.

Applying AI in, for example, productivity software such as Excel, email, or word processing might not be the sexiest idea, but compared to warfare it’s a relatively low-stakes application, and simple enough to have the potential to actually work as advertised. It could help us do the tedious bits of our jobs faster and better.

Boring AI is unlikely to break as easily and, most important, won’t kill anyone. Hopefully, soon we’ll forget we’re interacting with AI at all. (It wasn’t that long ago when machine translation was an exciting new thing in AI. Now most people don’t even think about its role in powering Google Translate.) 

That’s why I’m more confident that organizations like the DoD will find success applying generative AI in administrative and business processes. 

Boring AI is not morally complex. It’s not magic. But it works. 

Deeper Learning

AI isn’t great at decoding human emotions. So why are regulators targeting the tech?

Amid all the chatter about ChatGPT, artificial general intelligence, and the prospect of robots taking people’s jobs, regulators in the EU and the US have been ramping up warnings against AI and emotion recognition. Emotion recognition is the attempt to identify a person’s feelings or state of mind using AI analysis of video, facial images, or audio recordings. 

But why is this a top concern? Western regulators are particularly concerned about China’s use of the technology, and its potential to enable social control. And there’s also evidence that it simply does not work properly. Tate Ryan-Mosley dissected the thorny questions around the technology in last week’s edition of The Technocrat, our weekly newsletter on tech policy.

Bits and Bytes

Meta is preparing to launch free code-generating software
A version of its new LLaMA 2 language model that is able to generate programming code will pose a stiff challenge to similar proprietary code-generating programs from rivals such as OpenAI, Microsoft, and Google. The open-source program is called Code Llama, and its launch is imminent, according to The Information. (The Information

OpenAI is testing GPT-4 for content moderation
Using the language model to moderate online content could really help alleviate the mental toll content moderation takes on humans. OpenAI says it’s seen some promising first results, although the tech does not outperform highly trained humans. A lot of big, open questions remain, such as whether the tool can be attuned to different cultures and pick up context and nuance. (OpenAI)

Google is working on an AI assistant that offers life advice
The generative AI tools could function as a life coach, offering up ideas, planning instructions, and tutoring tips. (The New York Times)

Two tech luminaries have quit their jobs to build AI systems inspired by bees
Sakana, a new AI research lab, draws inspiration from the animal kingdom. Founded by two prominent industry researchers and former Googlers, the company plans to make multiple smaller AI models that work together, the idea being that a “swarm” of programs could be as powerful as a single large AI model. (Bloomberg)

Continue Reading

Copyright © 2021 Vitamin Patches Online.