Tech
High-performance, low-cost machine learning infrastructure is accelerating innovation in the cloud
Published
3 years agoon
By
Terry Power
Artificial intelligence and machine learning (AI and ML) are key technologies that help organizations develop new ways to increase sales, reduce costs, streamline business processes, and understand their customers better. AWS helps customers accelerate their AI/ML adoption by delivering powerful compute, high-speed networking, and scalable high-performance storage options on demand for any machine learning project. This lowers the barrier to entry for organizations looking to adopt the cloud to scale their ML applications.
Developers and data scientists are pushing the boundaries of technology and increasingly adopting deep learning, which is a type of machine learning based on neural network algorithms. These deep learning models are larger and more sophisticated resulting in rising costs to run underlying infrastructure to train and deploy these models.
To enable customers to accelerate their AI/ML transformation, AWS is building high-performance and low-cost machine learning chips. AWS Inferentia is the first machine learning chip built from the ground up by AWS for the lowest cost machine learning inference in the cloud. In fact, Amazon EC2 Inf1 instances powered by Inferentia, deliver 2.3x higher performance and up to 70% lower cost for machine learning inference than current generation GPU-based EC2 instances. AWS Trainium is the second machine learning chip by AWS that is purpose-built for training deep learning models and will be available in late 2021.
Customers across industries have deployed their ML applications in production on Inferentia and seen significant performance improvements and cost savings. For example, AirBnB’s customer support platform enables intelligent, scalable, and exceptional service experiences to its community of millions of hosts and guests across the globe. It used Inferentia-based EC2 Inf1 instances to deploy natural language processing (NLP) models that supported its chatbots. This led to a 2x improvement in performance out of the box over GPU-based instances.
With these innovations in silicon, AWS is enabling customers to train and execute their deep learning models in production easily with high performance and throughput at significantly lower costs.
Machine learning challenges speed shift to cloud-based infrastructure
Machine learning is an iterative process that requires teams to build, train, and deploy applications quickly, as well as train, retrain, and experiment frequently to increase the prediction accuracy of the models. When deploying trained models into their business applications, organizations need to also scale their applications to serve new users across the globe. They need to be able to serve multiple requests coming in at the same time with near real-time latency to ensure a superior user experience.
Emerging use cases such as object detection, natural language processing (NLP), image classification, conversational AI, and time series data rely on deep learning technology. Deep learning models are exponentially increasing in size and complexity, going from having millions of parameters to billions in a matter of a couple of years.
Training and deploying these complex and sophisticated models translates to significant infrastructure costs. Costs can quickly snowball to become prohibitively large as organizations scale their applications to deliver near real-time experiences to their users and customers.
This is where cloud-based machine learning infrastructure services can help. The cloud provides on-demand access to compute, high-performance networking, and large data storage, seamlessly combined with ML operations and higher level AI services, to enable organizations to get started immediately and scale their AI/ML initiatives.
How AWS is helping customers accelerate their AI/ML transformation
AWS Inferentia and AWS Trainium aim to democratize machine learning and make it accessible to developers irrespective of experience and organization size. Inferentia’s design is optimized for high performance, throughput, and low latency, which makes it ideal for deploying ML inference at scale.
Each AWS Inferentia chip contains four NeuronCores that implement a high-performance systolic array matrix multiply engine, which massively speeds up typical deep learning operations, such as convolution and transformers. NeuronCores are also equipped with a large on-chip cache, which helps to cut down on external memory accesses, reducing latency, and increasing throughput.
AWS Neuron, the software development kit for Inferentia, natively supports leading ML frameworks, like TensorFlow and PyTorch. Developers can continue using the same frameworks and lifecycle developments tools they know and love. For many of their trained models, they can compile and deploy them on Inferentia by changing just a single line of code, with no additional application code changes.
The result is a high-performance inference deployment, that can easily scale while keeping costs under control.
Sprinklr, a software-as-a-service company, has an AI-driven unified customer experience management platform that enables companies to gather and translate real-time customer feedback across multiple channels into actionable insights. This results in proactive issue resolution, enhanced product development, improved content marketing, and better customer service. Sprinklr used Inferentia to deploy its NLP and some of its computer vision models and saw significant performance improvements.
Several Amazon services also deploy their machine learning models on Inferentia.
Amazon Prime Video uses computer vision ML models to analyze video quality of live events to ensure an optimal viewer experience for Prime Video members. It deployed its image classification ML models on EC2 Inf1 instances and saw a 4x improvement in performance and up to a 40% savings in cost as compared to GPU-based instances.
Another example is Amazon Alexa’s AI and ML-based intelligence, powered by Amazon Web Services, which is available on more than 100 million devices today. Alexa’s promise to customers is that it is always becoming smarter, more conversational, more proactive, and even more delightful. Delivering on that promise requires continuous improvements in response times and machine learning infrastructure costs. By deploying Alexa’s text-to-speech ML models on Inf1 instances, it was able to lower inference latency by 25% and cost-per-inference by 30% to enhance service experience for tens of millions of customers who use Alexa each month.
Unleashing new machine learning capabilities in the cloud
As companies race to future-proof their business by enabling the best digital products and services, no organization can fall behind on deploying sophisticated machine learning models to help innovate their customer experiences. Over the past few years, there has been an enormous increase in the applicability of machine learning for a variety of use cases, from personalization and churn prediction to fraud detection and supply chain forecasting.
Luckily, machine learning infrastructure in the cloud is unleashing new capabilities that were previously not possible, making it far more accessible to non-expert practitioners. That’s why AWS customers are already using Inferentia-powered Amazon EC2 Inf1 instances to provide the intelligence behind their recommendation engines and chatbots and to get actionable insights from customer feedback.
With AWS cloud-based machine learning infrastructure options suitable for various skill levels, it’s clear that any organization can accelerate innovation and embrace the entire machine learning lifecycle at scale. As machine learning continues to become more pervasive, organizations are now able to fundamentally transform the customer experience—and the way they do business—with cost-effective, high-performance cloud-based machine learning infrastructure.
Learn more about how AWS’s machine learning platform can help your company innovate here.
This content was produced by AWS. It was not written by MIT Technology Review’s editorial staff.
You may like
-
This UK startup engineered a clever way to reuse waste heat from cloud computing
-
Accelerating retail personalization at scale
-
A simple urine test for low-cost cancer diagnosis
-
Lefdal Mine Datacenter goes green with a secure and flexible cloud
-
Smart energy: Future-proofing utilities on the cloud
-
Stock exchanges move to the public cloud to maximize tech-based innovations
My senior spring in high school, I decided to defer my MIT enrollment by a year. I had always planned to take a gap year, but after receiving the silver tube in the mail and seeing all my college-bound friends plan out their classes and dorm decor, I got cold feet. Every time I mentioned my plans, I was met with questions like “But what about school?” and “MIT is cool with this?”
Yeah. MIT totally is. Postponing your MIT start date is as simple as clicking a checkbox.
Now, having finished my first year of classes, I’m really grateful that I stuck with my decision to delay MIT, as I realized that having a full year of unstructured time is a gift. I could let my creative juices run. Pick up hobbies for fun. Do cool things like work at an AI startup and teach myself how to create latte art. My favorite part of the year, however, was backpacking across Europe. I traveled through Austria, Slovakia, Russia, Spain, France, the UK, Greece, Italy, Germany, Poland, Romania, and Hungary.
Moreover, despite my fear that I’d be losing a valuable year, traveling turned out to be the most productive thing I could have done with my time. I got to explore different cultures, meet new people from all over the world, and gain unique perspectives that I couldn’t have gotten otherwise. My travels throughout Europe allowed me to leave my comfort zone and expand my understanding of the greater human experience.
“In Iceland there’s less focus on hustle culture, and this relaxed approach to work-life balance ends up fostering creativity. This was a wild revelation to a bunch of MIT students.”
When I became a full-time student last fall, I realized that StartLabs, the premier undergraduate entrepreneurship club on campus, gives MIT undergrads a similar opportunity to expand their horizons and experience new things. I immediately signed up. At StartLabs, we host fireside chats and ideathons throughout the year. But our flagship event is our annual TechTrek over spring break. In previous years, StartLabs has gone on TechTrek trips to Germany, Switzerland, and Israel. On these fully funded trips, StartLabs members have visited and collaborated with industry leaders, incubators, startups, and academic institutions. They take these treks both to connect with the global startup sphere and to build closer relationships within the club itself.
Most important, however, the process of organizing the TechTrek is itself an expedited introduction to entrepreneurship. The trip is entirely planned by StartLabs members; we figure out travel logistics, find sponsors, and then discover ways to optimize our funding.
In organizing this year’s trip to Iceland, we had to learn how to delegate roles to all the planners and how to maintain morale when making this trip a reality seemed to be an impossible task. We woke up extra early to take 6 a.m. calls with Icelandic founders and sponsors. We came up with options for different levels of sponsorship, used pattern recognition to deduce the email addresses of hundreds of potential contacts at organizations we wanted to visit, and all got scrappy with utilizing our LinkedIn connections.
And as any good entrepreneur must, we had to learn how to be lean and maximize our resources. To stretch our food budget, we planned all our incubator and company visits around lunchtime in hopes of getting fed, played human Tetris as we fit 16 people into a six-person Airbnb, and emailed grocery stores to get their nearly expired foods for a discount. We even made a deal with the local bus company to give us free tickets in exchange for a story post on our Instagram account.
Tech
The Download: spying keyboard software, and why boring AI is best
Published
1 year agoon
22 August 2023By
Terry Power
This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.
How ubiquitous keyboard software puts hundreds of millions of Chinese users at risk
For millions of Chinese people, the first software they download onto devices is always the same: a keyboard app. Yet few of them are aware that it may make everything they type vulnerable to spying eyes.
QWERTY keyboards are inefficient as many Chinese characters share the same latinized spelling. As a result, many switch to smart, localized keyboard apps to save time and frustration. Today, over 800 million Chinese people use third-party keyboard apps on their PCs, laptops, and mobile phones.
But a recent report by the Citizen Lab, a University of Toronto–affiliated research group, revealed that Sogou, one of the most popular Chinese keyboard apps, had a massive security loophole. Read the full story.
—Zeyi Yang
Why we should all be rooting for boring AI
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. It hopes they could improve intelligence and operational planning.
But those might not be the right use cases, writes our senior AI reporter Melissa Heikkila. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. The DoD’s best bet is to apply generative AI to more mundane things like Excel, email, or word processing. Read the full story.
This story is from The Algorithm, Melissa’s weekly newsletter giving you the inside track on all things AI. Sign up to receive it in your inbox every Monday.
The ice cores that will let us look 1.5 million years into the past
To better understand the role atmospheric carbon dioxide plays in Earth’s climate cycles, scientists have long turned to ice cores drilled in Antarctica, where snow layers accumulate and compact over hundreds of thousands of years, trapping samples of ancient air in a lattice of bubbles that serve as tiny time capsules.
By analyzing those cores, scientists can connect greenhouse-gas concentrations with temperatures going back 800,000 years. Now, a new European-led initiative hopes to eventually retrieve the oldest core yet, dating back 1.5 million years. But that impressive feat is still only the first step. Once they’ve done that, they’ll have to figure out how they’re going to extract the air from the ice. Read the full story.
—Christian Elliott
This story is from the latest edition of our print magazine, set to go live tomorrow. Subscribe today for as low as $8/month to ensure you receive full access to the new Ethics issue and in-depth stories on experimental drugs, AI assisted warfare, microfinance, and more.
The must-reads
I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.
1 How AI got dragged into the culture wars
Fears about ‘woke’ AI fundamentally misunderstand how it works. Yet they’re gaining traction. (The Guardian)
+ Why it’s impossible to build an unbiased AI language model. (MIT Technology Review)
2 Researchers are racing to understand a new coronavirus variant
It’s unlikely to be cause for concern, but it shows this virus still has plenty of tricks up its sleeve. (Nature)
+ Covid hasn’t entirely gone away—here’s where we stand. (MIT Technology Review)
+ Why we can’t afford to stop monitoring it. (Ars Technica)
3 How Hilary became such a monster storm
Much of it is down to unusually hot sea surface temperatures. (Wired $)
+ The era of simultaneous climate disasters is here to stay. (Axios)
+ People are donning cooling vests so they can work through the heat. (Wired $)
4 Brain privacy is set to become important
Scientists are getting better at decoding our brain data. It’s surely only a matter of time before others want a peek. (The Atlantic $)
+ How your brain data could be used against you. (MIT Technology Review)
5 How Nvidia built such a big competitive advantage in AI chips
Today it accounts for 70% of all AI chip sales—and an even greater share for training generative models. (NYT $)
+ The chips it’s selling to China are less effective due to US export controls. (Ars Technica)
+ These simple design rules could turn the chip industry on its head. (MIT Technology Review)
6 Inside the complex world of dissociative identity disorder on TikTok
Reducing stigma is great, but doctors fear people are self-diagnosing or even imitating the disorder. (The Verge)
7 What TikTok might have to give up to keep operating in the US
This shows just how hollow the authorities’ purported data-collection concerns really are. (Forbes)
8 Soldiers in Ukraine are playing World of Tanks on their phones
It’s eerily similar to the war they are themselves fighting, but they say it helps them to dissociate from the horror. (NYT $)
9 Conspiracy theorists are sharing mad ideas on what causes wildfires
But it’s all just a convoluted way to try to avoid having to tackle climate change. (Slate $)
10 Christie’s accidentally leaked the location of tons of valuable art
Seemingly thanks to the metadata that often automatically attaches to smartphone photos. (WP $)
Quote of the day
“Is it going to take people dying for something to move forward?”
—An anonymous air traffic controller warns that staffing shortages in their industry, plus other factors, are starting to threaten passenger safety, the New York Times reports.
The big story
Inside effective altruism, where the far future counts a lot more than the present
October 2022
Since its birth in the late 2000s, effective altruism has aimed to answer the question “How can those with means have the most impact on the world in a quantifiable way?”—and supplied methods for calculating the answer.
It’s no surprise that effective altruisms’ ideas have long faced criticism for reflecting white Western saviorism, alongside an avoidance of structural problems in favor of abstract math. And as believers pour even greater amounts of money into the movement’s increasingly sci-fi ideals, such charges are only intensifying. Read the full story.
—Rebecca Ackermann
We can still have nice things
A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)
+ Watch Andrew Scott’s electrifying reading of the 1965 commencement address ‘Choose One of Five’ by Edith Sampson.
+ Here’s how Metallica makes sure its live performances ROCK. ($)
+ Cannot deal with this utterly ludicrous wooden vehicle.
+ Learn about a weird and wonderful new instrument called a harpejji.
Tech
Why we should all be rooting for boring AI
Published
1 year agoon
22 August 2023By
Terry Power
This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.
I’m back from a wholesome week off picking blueberries in a forest. So this story we published last week about the messy ethics of AI in warfare is just the antidote, bringing my blood pressure right back up again.
Arthur Holland Michel does a great job looking at the complicated and nuanced ethical questions around warfare and the military’s increasing use of artificial-intelligence tools. There are myriad ways AI could fail catastrophically or be abused in conflict situations, and there don’t seem to be any real rules constraining it yet. Holland Michel’s story illustrates how little there is to hold people accountable when things go wrong.
Last year I wrote about how the war in Ukraine kick-started a new boom in business for defense AI startups. The latest hype cycle has only added to that, as companies—and now the military too—race to embed generative AI in products and services.
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department.
The department sees tons of potential to “improve intelligence, operational planning, and administrative and business processes.”
But Holland Michel’s story highlights why the first two use cases might be a bad idea. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. Everyone agrees that humans should make the final call, but that is made harder by technology that acts unpredictably, especially in fast-moving conflict situations.
Some worry that the people lowest on the hierarchy will pay the highest price when things go wrong: “In the event of an accident—regardless of whether the human was wrong, the computer was wrong, or they were wrong together—the person who made the ‘decision’ will absorb the blame and protect everyone else along the chain of command from the full impact of accountability,” Holland Michel writes.
The only ones who seem likely to face no consequences when AI fails in war are the companies supplying the technology.
It helps companies when the rules the US has set to govern AI in warfare are mere recommendations, not laws. That makes it really hard to hold anyone accountable. Even the AI Act, the EU’s sweeping upcoming regulation for high-risk AI systems, exempts military uses, which arguably are the highest-risk applications of them all.
While everyone is looking for exciting new uses for generative AI, I personally can’t wait for it to become boring.
Amid early signs that people are starting to lose interest in the technology, companies might find that these sorts of tools are better suited for mundane, low-risk applications than solving humanity’s biggest problems.
Applying AI in, for example, productivity software such as Excel, email, or word processing might not be the sexiest idea, but compared to warfare it’s a relatively low-stakes application, and simple enough to have the potential to actually work as advertised. It could help us do the tedious bits of our jobs faster and better.
Boring AI is unlikely to break as easily and, most important, won’t kill anyone. Hopefully, soon we’ll forget we’re interacting with AI at all. (It wasn’t that long ago when machine translation was an exciting new thing in AI. Now most people don’t even think about its role in powering Google Translate.)
That’s why I’m more confident that organizations like the DoD will find success applying generative AI in administrative and business processes.
Boring AI is not morally complex. It’s not magic. But it works.
Deeper Learning
AI isn’t great at decoding human emotions. So why are regulators targeting the tech?
Amid all the chatter about ChatGPT, artificial general intelligence, and the prospect of robots taking people’s jobs, regulators in the EU and the US have been ramping up warnings against AI and emotion recognition. Emotion recognition is the attempt to identify a person’s feelings or state of mind using AI analysis of video, facial images, or audio recordings.
But why is this a top concern? Western regulators are particularly concerned about China’s use of the technology, and its potential to enable social control. And there’s also evidence that it simply does not work properly. Tate Ryan-Mosley dissected the thorny questions around the technology in last week’s edition of The Technocrat, our weekly newsletter on tech policy.
Bits and Bytes
Meta is preparing to launch free code-generating software
A version of its new LLaMA 2 language model that is able to generate programming code will pose a stiff challenge to similar proprietary code-generating programs from rivals such as OpenAI, Microsoft, and Google. The open-source program is called Code Llama, and its launch is imminent, according to The Information. (The Information)
OpenAI is testing GPT-4 for content moderation
Using the language model to moderate online content could really help alleviate the mental toll content moderation takes on humans. OpenAI says it’s seen some promising first results, although the tech does not outperform highly trained humans. A lot of big, open questions remain, such as whether the tool can be attuned to different cultures and pick up context and nuance. (OpenAI)
Google is working on an AI assistant that offers life advice
The generative AI tools could function as a life coach, offering up ideas, planning instructions, and tutoring tips. (The New York Times)
Two tech luminaries have quit their jobs to build AI systems inspired by bees
Sakana, a new AI research lab, draws inspiration from the animal kingdom. Founded by two prominent industry researchers and former Googlers, the company plans to make multiple smaller AI models that work together, the idea being that a “swarm” of programs could be as powerful as a single large AI model. (Bloomberg)