Tech
A Chinese rocket is falling back to Earth—but we don’t know where it will land
Published
4 years agoon
By
Terry Power
The probability that parts of the booster could hit populated land is admittedly quite low—it’s much more likely to land in the ocean somewhere. But that probability is not zero. Case in point: the CZ-5B booster’s debut last year for a mission on May 5, 2020. The same problem arose back then as well: the core booster ended up in an uncontrolled orbit before eventually reentering Earth’s atmosphere. Debris landed in villages across Ivory Coast. It was enough to elicit a notable rebuke from the NASA administrator at the time, Jim Bridenstine.
The same story is playing out this time, and we’re playing the same waiting game because of how difficult it is to predict when and where this thing will reenter. The first reason is the booster’s speed: it’s currently traveling at nearly 30,000 kilometers per hour, orbiting the planet about once every 90 minutes. The second reason has to do with the amount of drag the booster is experiencing. Although technically it’s in space, the booster is still interacting with the upper edges of the planet’s atmosphere.
That drag varies from day to day with changes in upper-atmosphere weather, solar activity, and other phenomena. In addition, the booster isn’t just zipping around smoothly and punching through the atmosphere cleanly—it’s tumbling, which creates even more unpredictable drag.
Given those factors, we can establish a window for when and where we think the booster will reenter Earth’s atmosphere. But a change of even a couple of minutes can put its location thousands of miles away. “It can be difficult to model precisely, meaning we are left with some serious uncertainties when it comes to the space object’s reentry time,” says Thomas G. Roberts, an adjunct fellow at the CSIS Aerospace Security Project.
This also depends on how well the structure of the booster holds up to heating caused by friction with the atmosphere. Some materials might hold up better than others, but drag will increase as the structure breaks up and melts. The flimsier the structure, the more it will break up, and the more drag will be produced, causing it to fall out of orbit more quickly. Some parts may hit the ground earlier or later than others.
By the morning of reentry, the estimate of when it will land should have narrowed to just a few hours. Several different groups around the world are tracking the booster, but most experts are following data provided by the US Space Force through its Space Track website. Jonathan McDowell, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics, hopes that by the morning of reentry, the timing window will have shrunk to just a couple of hour where the booster orbits Earth maybe two more times. By then we should have a sharper sense of the route those orbits are taking and what regions of the Earth may be at risk from a shower of debris.
The Space Force’s missile early warning systems will already be tracking the infrared flare from the disintegrating rocket when reentry starts, so it will know where the debris is headed. Civilians won’t know for a while, of course, because that data is sensitive—it will take a few hours to work through the bureaucracy before an update is made to the Space Track site. If the remnants of the booster have landed in a populated area, we might already know thanks to reports on social media.
In the 1970s, these were common hazards after missions. “Then people started to feel it wasn’t appropriate to have large chunks of metal falling out of the sky,” says McDowell. NASA’s 77-ton Skylab space station was something of a wake-up call—its widely watched uncontrolled deorbit in 1979 led to large debris hitting Western Australia. No one was hurt and there was no property damage, but the world was eager to avoid any similar risks of large spacecraft uncontrollably reentering the atmosphere (not a problem with smaller boosters, which just burn up safely).
As a result, after the core booster gets into orbit and separates from the secondary boosters and payload, many launch providers quickly do a deorbit burn that brings it back into the atmosphere and sets it on a controlled crash course for the ocean, eliminating the risk it would pose if left in space. This can be accomplished with either a restartable engine or an added second engine designed for deorbit burns specifically. The remnants of these boosters are sent to a remote part of the ocean, such as the South Pacific Ocean Uninhabited Area, where other massive spacecraft like Russia’s former Mir space station have been dumped.
Another approach which was, used during space shuttle missions and is currently used by large boosters like Europe’s Ariane 5, is to avoid putting the core stage in orbit entirely and simply switch it off a few seconds early while it’s still in Earth’s atmosphere. Smaller engines then fire to take the payload the short extra distance to space, while the core booster is dumped in the ocean.
None of these options are cheap, and they create some new risks (more engines mean more points of failure), but “it’s what everyone does, since they don’t want to create this type of debris risk,” says McDowell. “It’s been standard practice around the world to avoid leaving these boosters in orbit. The Chinese are an outlier of this.”
Why? “Space safety is just not China’s priority,” says Roberts. “With years of space launch operations under its belt, China is capable of avoiding this weekend’s outcome, but chose not to.”
The past few years have seen a number of rocket bodies from Chinese launches that have been allowed to fall back to land, destroying buildings in villages and exposing people to toxic chemicals. “It’s no wonder that they would be willing to roll the dice on an uncontrolled atmospheric reentry, where the threat to populated areas pales in comparison,” says Roberts. “I find this behavior totally unacceptable, but not surprising.”
McDowell also points to what happened during the space shuttle Columbia disaster, when damage to the wing caused the spacecraft’s entry to become unstable and break apart. Nearly 38,500 kilograms of debris landed in Texas and Louisiana. Large chunks of the main engine ended up in a swamp—had it broken up a couple of minutes earlier, those parts could have hit a major city, slamming into skyscrapers in, say, Dallas. “I think people don’t appreciate how lucky we were that there weren’t casualties on the ground,” says McDowell. “We’ve been in these risky situations before and been lucky.”
But you can’t always count on luck. The CZ-5B variant of the Long March 5B is slated for two more launches in 2022 to help build out the rest of the Chinese space station. There’s no indication yet whether China plans to change its blueprint for those missions. Perhaps that will depend on what happens this weekend.
You may like
-
Decoding the data of the Chinese mpox outbreak
-
The Download: Meta’s new AI system, and covert Chinese social media activity
-
Spotting Chinese state media social accounts continues to be a challenge
-
The US city that scares Chinese Amazon sellers
-
The counterfeit lawsuits that scoop up hundreds of Chinese Amazon sellers at once
-
The Twitter accounts that impersonate Chinese celebrities for clout and cash
My senior spring in high school, I decided to defer my MIT enrollment by a year. I had always planned to take a gap year, but after receiving the silver tube in the mail and seeing all my college-bound friends plan out their classes and dorm decor, I got cold feet. Every time I mentioned my plans, I was met with questions like “But what about school?” and “MIT is cool with this?”
Yeah. MIT totally is. Postponing your MIT start date is as simple as clicking a checkbox.
Now, having finished my first year of classes, I’m really grateful that I stuck with my decision to delay MIT, as I realized that having a full year of unstructured time is a gift. I could let my creative juices run. Pick up hobbies for fun. Do cool things like work at an AI startup and teach myself how to create latte art. My favorite part of the year, however, was backpacking across Europe. I traveled through Austria, Slovakia, Russia, Spain, France, the UK, Greece, Italy, Germany, Poland, Romania, and Hungary.
Moreover, despite my fear that I’d be losing a valuable year, traveling turned out to be the most productive thing I could have done with my time. I got to explore different cultures, meet new people from all over the world, and gain unique perspectives that I couldn’t have gotten otherwise. My travels throughout Europe allowed me to leave my comfort zone and expand my understanding of the greater human experience.
“In Iceland there’s less focus on hustle culture, and this relaxed approach to work-life balance ends up fostering creativity. This was a wild revelation to a bunch of MIT students.”
When I became a full-time student last fall, I realized that StartLabs, the premier undergraduate entrepreneurship club on campus, gives MIT undergrads a similar opportunity to expand their horizons and experience new things. I immediately signed up. At StartLabs, we host fireside chats and ideathons throughout the year. But our flagship event is our annual TechTrek over spring break. In previous years, StartLabs has gone on TechTrek trips to Germany, Switzerland, and Israel. On these fully funded trips, StartLabs members have visited and collaborated with industry leaders, incubators, startups, and academic institutions. They take these treks both to connect with the global startup sphere and to build closer relationships within the club itself.
Most important, however, the process of organizing the TechTrek is itself an expedited introduction to entrepreneurship. The trip is entirely planned by StartLabs members; we figure out travel logistics, find sponsors, and then discover ways to optimize our funding.
In organizing this year’s trip to Iceland, we had to learn how to delegate roles to all the planners and how to maintain morale when making this trip a reality seemed to be an impossible task. We woke up extra early to take 6 a.m. calls with Icelandic founders and sponsors. We came up with options for different levels of sponsorship, used pattern recognition to deduce the email addresses of hundreds of potential contacts at organizations we wanted to visit, and all got scrappy with utilizing our LinkedIn connections.
And as any good entrepreneur must, we had to learn how to be lean and maximize our resources. To stretch our food budget, we planned all our incubator and company visits around lunchtime in hopes of getting fed, played human Tetris as we fit 16 people into a six-person Airbnb, and emailed grocery stores to get their nearly expired foods for a discount. We even made a deal with the local bus company to give us free tickets in exchange for a story post on our Instagram account.
Tech
The Download: spying keyboard software, and why boring AI is best
Published
1 year agoon
22 August 2023By
Terry Power
This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.
How ubiquitous keyboard software puts hundreds of millions of Chinese users at risk
For millions of Chinese people, the first software they download onto devices is always the same: a keyboard app. Yet few of them are aware that it may make everything they type vulnerable to spying eyes.
QWERTY keyboards are inefficient as many Chinese characters share the same latinized spelling. As a result, many switch to smart, localized keyboard apps to save time and frustration. Today, over 800 million Chinese people use third-party keyboard apps on their PCs, laptops, and mobile phones.
But a recent report by the Citizen Lab, a University of Toronto–affiliated research group, revealed that Sogou, one of the most popular Chinese keyboard apps, had a massive security loophole. Read the full story.
—Zeyi Yang
Why we should all be rooting for boring AI
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. It hopes they could improve intelligence and operational planning.
But those might not be the right use cases, writes our senior AI reporter Melissa Heikkila. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. The DoD’s best bet is to apply generative AI to more mundane things like Excel, email, or word processing. Read the full story.
This story is from The Algorithm, Melissa’s weekly newsletter giving you the inside track on all things AI. Sign up to receive it in your inbox every Monday.
The ice cores that will let us look 1.5 million years into the past
To better understand the role atmospheric carbon dioxide plays in Earth’s climate cycles, scientists have long turned to ice cores drilled in Antarctica, where snow layers accumulate and compact over hundreds of thousands of years, trapping samples of ancient air in a lattice of bubbles that serve as tiny time capsules.
By analyzing those cores, scientists can connect greenhouse-gas concentrations with temperatures going back 800,000 years. Now, a new European-led initiative hopes to eventually retrieve the oldest core yet, dating back 1.5 million years. But that impressive feat is still only the first step. Once they’ve done that, they’ll have to figure out how they’re going to extract the air from the ice. Read the full story.
—Christian Elliott
This story is from the latest edition of our print magazine, set to go live tomorrow. Subscribe today for as low as $8/month to ensure you receive full access to the new Ethics issue and in-depth stories on experimental drugs, AI assisted warfare, microfinance, and more.
The must-reads
I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.
1 How AI got dragged into the culture wars
Fears about ‘woke’ AI fundamentally misunderstand how it works. Yet they’re gaining traction. (The Guardian)
+ Why it’s impossible to build an unbiased AI language model. (MIT Technology Review)
2 Researchers are racing to understand a new coronavirus variant
It’s unlikely to be cause for concern, but it shows this virus still has plenty of tricks up its sleeve. (Nature)
+ Covid hasn’t entirely gone away—here’s where we stand. (MIT Technology Review)
+ Why we can’t afford to stop monitoring it. (Ars Technica)
3 How Hilary became such a monster storm
Much of it is down to unusually hot sea surface temperatures. (Wired $)
+ The era of simultaneous climate disasters is here to stay. (Axios)
+ People are donning cooling vests so they can work through the heat. (Wired $)
4 Brain privacy is set to become important
Scientists are getting better at decoding our brain data. It’s surely only a matter of time before others want a peek. (The Atlantic $)
+ How your brain data could be used against you. (MIT Technology Review)
5 How Nvidia built such a big competitive advantage in AI chips
Today it accounts for 70% of all AI chip sales—and an even greater share for training generative models. (NYT $)
+ The chips it’s selling to China are less effective due to US export controls. (Ars Technica)
+ These simple design rules could turn the chip industry on its head. (MIT Technology Review)
6 Inside the complex world of dissociative identity disorder on TikTok
Reducing stigma is great, but doctors fear people are self-diagnosing or even imitating the disorder. (The Verge)
7 What TikTok might have to give up to keep operating in the US
This shows just how hollow the authorities’ purported data-collection concerns really are. (Forbes)
8 Soldiers in Ukraine are playing World of Tanks on their phones
It’s eerily similar to the war they are themselves fighting, but they say it helps them to dissociate from the horror. (NYT $)
9 Conspiracy theorists are sharing mad ideas on what causes wildfires
But it’s all just a convoluted way to try to avoid having to tackle climate change. (Slate $)
10 Christie’s accidentally leaked the location of tons of valuable art
Seemingly thanks to the metadata that often automatically attaches to smartphone photos. (WP $)
Quote of the day
“Is it going to take people dying for something to move forward?”
—An anonymous air traffic controller warns that staffing shortages in their industry, plus other factors, are starting to threaten passenger safety, the New York Times reports.
The big story
Inside effective altruism, where the far future counts a lot more than the present
October 2022
Since its birth in the late 2000s, effective altruism has aimed to answer the question “How can those with means have the most impact on the world in a quantifiable way?”—and supplied methods for calculating the answer.
It’s no surprise that effective altruisms’ ideas have long faced criticism for reflecting white Western saviorism, alongside an avoidance of structural problems in favor of abstract math. And as believers pour even greater amounts of money into the movement’s increasingly sci-fi ideals, such charges are only intensifying. Read the full story.
—Rebecca Ackermann
We can still have nice things
A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)
+ Watch Andrew Scott’s electrifying reading of the 1965 commencement address ‘Choose One of Five’ by Edith Sampson.
+ Here’s how Metallica makes sure its live performances ROCK. ($)
+ Cannot deal with this utterly ludicrous wooden vehicle.
+ Learn about a weird and wonderful new instrument called a harpejji.
Tech
Why we should all be rooting for boring AI
Published
1 year agoon
22 August 2023By
Terry Power
This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.
I’m back from a wholesome week off picking blueberries in a forest. So this story we published last week about the messy ethics of AI in warfare is just the antidote, bringing my blood pressure right back up again.
Arthur Holland Michel does a great job looking at the complicated and nuanced ethical questions around warfare and the military’s increasing use of artificial-intelligence tools. There are myriad ways AI could fail catastrophically or be abused in conflict situations, and there don’t seem to be any real rules constraining it yet. Holland Michel’s story illustrates how little there is to hold people accountable when things go wrong.
Last year I wrote about how the war in Ukraine kick-started a new boom in business for defense AI startups. The latest hype cycle has only added to that, as companies—and now the military too—race to embed generative AI in products and services.
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department.
The department sees tons of potential to “improve intelligence, operational planning, and administrative and business processes.”
But Holland Michel’s story highlights why the first two use cases might be a bad idea. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. Everyone agrees that humans should make the final call, but that is made harder by technology that acts unpredictably, especially in fast-moving conflict situations.
Some worry that the people lowest on the hierarchy will pay the highest price when things go wrong: “In the event of an accident—regardless of whether the human was wrong, the computer was wrong, or they were wrong together—the person who made the ‘decision’ will absorb the blame and protect everyone else along the chain of command from the full impact of accountability,” Holland Michel writes.
The only ones who seem likely to face no consequences when AI fails in war are the companies supplying the technology.
It helps companies when the rules the US has set to govern AI in warfare are mere recommendations, not laws. That makes it really hard to hold anyone accountable. Even the AI Act, the EU’s sweeping upcoming regulation for high-risk AI systems, exempts military uses, which arguably are the highest-risk applications of them all.
While everyone is looking for exciting new uses for generative AI, I personally can’t wait for it to become boring.
Amid early signs that people are starting to lose interest in the technology, companies might find that these sorts of tools are better suited for mundane, low-risk applications than solving humanity’s biggest problems.
Applying AI in, for example, productivity software such as Excel, email, or word processing might not be the sexiest idea, but compared to warfare it’s a relatively low-stakes application, and simple enough to have the potential to actually work as advertised. It could help us do the tedious bits of our jobs faster and better.
Boring AI is unlikely to break as easily and, most important, won’t kill anyone. Hopefully, soon we’ll forget we’re interacting with AI at all. (It wasn’t that long ago when machine translation was an exciting new thing in AI. Now most people don’t even think about its role in powering Google Translate.)
That’s why I’m more confident that organizations like the DoD will find success applying generative AI in administrative and business processes.
Boring AI is not morally complex. It’s not magic. But it works.
Deeper Learning
AI isn’t great at decoding human emotions. So why are regulators targeting the tech?
Amid all the chatter about ChatGPT, artificial general intelligence, and the prospect of robots taking people’s jobs, regulators in the EU and the US have been ramping up warnings against AI and emotion recognition. Emotion recognition is the attempt to identify a person’s feelings or state of mind using AI analysis of video, facial images, or audio recordings.
But why is this a top concern? Western regulators are particularly concerned about China’s use of the technology, and its potential to enable social control. And there’s also evidence that it simply does not work properly. Tate Ryan-Mosley dissected the thorny questions around the technology in last week’s edition of The Technocrat, our weekly newsletter on tech policy.
Bits and Bytes
Meta is preparing to launch free code-generating software
A version of its new LLaMA 2 language model that is able to generate programming code will pose a stiff challenge to similar proprietary code-generating programs from rivals such as OpenAI, Microsoft, and Google. The open-source program is called Code Llama, and its launch is imminent, according to The Information. (The Information)
OpenAI is testing GPT-4 for content moderation
Using the language model to moderate online content could really help alleviate the mental toll content moderation takes on humans. OpenAI says it’s seen some promising first results, although the tech does not outperform highly trained humans. A lot of big, open questions remain, such as whether the tool can be attuned to different cultures and pick up context and nuance. (OpenAI)
Google is working on an AI assistant that offers life advice
The generative AI tools could function as a life coach, offering up ideas, planning instructions, and tutoring tips. (The New York Times)
Two tech luminaries have quit their jobs to build AI systems inspired by bees
Sakana, a new AI research lab, draws inspiration from the animal kingdom. Founded by two prominent industry researchers and former Googlers, the company plans to make multiple smaller AI models that work together, the idea being that a “swarm” of programs could be as powerful as a single large AI model. (Bloomberg)
You must be logged in to post a comment Login