Connect with us

Health

Common Acne Treatment In Adolescents Can Have Long-Term Effects On Skeletal System: Study

Published

on

Common Acne Treatment In Adolescents Can Have Long-Term Effects On Skeletal System: Study


Teenagers with acne may need to think twice before starting a common antibiotic treatment meant to resolve skin issues. A new study has found that antibiotic treatment may alter the skeletal system with long-lasting effects.

The study, published in the Journal of Clinical Investigation (JCI) Insight, showed that long-term topical use of a systemic antibiotic, minocycline, may have unintended effects during adolescent bone development.

Minocycline treatment can last for up to two years. This antibiotic alters the gut microbiome—the population of microorganisms that live in the gut.

Researchers from the Medical University of South Carolina (MUSC) found a strong correlation between the composition of the gut microbiome and healthy skeletal maturation.

For the study, the research team gave an appropriate dose of minocycline to mice during the pubertal/postpubertal growth stage, which is the equivalent age of adolescence in humans.

It was found in the study that though minocycline therapy did not cause any cytotoxic effects or induce a pro-inflammatory response, it did change the composition of the gut microbiome which led to decreased bone mass accrual and inefficient skeletal maturation.

“There are sustained changes to the gut microbiome following long-term systemic minocycline therapy that leads to reduced bone maturation,” first author, Matthew Carson, Novince lab, said, reported SciTechDaily.

“From a clinical perspective, not only is minocycline treatment causing changes to the maturing skeleton, the microbiome and the skeleton aren’t able to recover fully after antibiotic therapy,” Chad Novince, principal investigator and associate professor in the Department of Oral Health Sciences in the College of Dental Medicine added.

Minocycline belongs to the tetracycline class of antibiotics. This group also includes antibiotics such as tetracycline, doxycycline, and sarecycline. These antibiotics work by obstructing the growth and spread of bacteria. In the case of acne, they kill the bacteria that infect pores and reduce certain acne-causing natural oily substances.

“What’s really interesting is if you cause changes to the microbiome during this adolescent phase when your microbiota is still progressing toward a stable adult state, you’re going to have profound effects on the maturing skeleton,” Carson said, as per the outlet.

Interestingly, the team found that the changes in the gut microbiome due to minocycline also affected the communication between the liver and the small intestine, which takes place through molecules called bile acids.

“Bile acids had not previously been considered as important communication molecules between the gut and the skeleton,” Novince said, according to the outlet. “By changing the gut microbiome, the makeup of the bile acids is altered, which influences host physiology, including skeletal maturation.”

The altered gut microbiome created a different pool of bile acids. These different types of bile acids could not activate bone-forming cells called osteoblasts, which, in turn, decreased bone formation and mineralization by more than 30%.

“This was truly collaborative science, which is where I think we’re at today,” Novince said. “To drive high-impact science, you need to bring in experts from different professions and disciplines. We were fortunate to have a really strong team. It was fun – the whole thing was exciting!”





Source link

Health

Scientists Identify Protein To Help Treat Brain Hemorrhage

Published

on

Does COVID-19 Affect Brain Development Of Babies In The Womb?


Chances of disability among survivors of hemorrhage are high, especially when it comes to long-term neurological deficits. Now, doctors have weighed the potential of a protein to treat this condition.

The protein in focus is called cerebral dopamine neurotrophic factor (CDNF), which has a demonstrated history of reducing Endoplasmic Reticulum stress, and is being tested for restorative treatment to neurological conditions such as Parkinson’s disease. Researchers from the Brain Repair Laboratory, University of Helsinki, forged an international collaboration with their Taiwanese colleagues to find out whether the protein shows favorable outcomes in treating brain bleed.

The authors found a streak of hope in the research after administering CDNF in an animal model of a brain hemorrhage. The research showed the component speeds up hemorrhagic lesion resolution, reduces brain swelling, and improves brain functioning, according to the scientific study published in Cell Death and Disease.

“Surprisingly, we found that cerebral dopamine neurotrophic factor acts on immune cells in the bleeding brain, by increasing anti-inflammatory mediators and suppressing the production of the pro-inflammatory cytokines that are responsible for cell signaling. This is a significant step towards the treatment of injuries caused by a brain hemorrhage, for which we currently have no cure,” Professor Mikko Airavaara, from the University of Helsinki, said in a news release on the findings.

Dr. Vassileios Stratoulias from the Brain Repair laboratory said in simple terms, all CDNF does is encourage immune cells in the brain to consume and remove the waste and debris produced by the brain after an intracerebral hemorrhage, which facilitates brain recovery.

Brain bleeding occurs within the meninges, which is located inside the skull, but outside the actual brain tissue. Intracerebral hemorrhage, alternatively called hemorrhage, is a type of brain bleeding, which occurs anywhere between lobes, pons and cerebellum of the brain.

“It’s interesting to note that after a bleeding episode, the brain contains a lot of waste and debris. Cerebral dopamine neurotrophic factor encourages immune cells in the brain to consume and remove the waste and debris, which is essential for the brain’s recovery!” he said.

The administration of cerebral dopamine neurotrophic factor also helped mitigate cell stress in the area that surrounds the hematoma, a swelling resulting from blood clotting at the site of blood vessel damage.





Source link

Continue Reading

Health

Scientists Suggest Simple Supplement To Combat Key Protein That Drives Aging

Published

on

Scientists Suggest Simple Supplement To Combat Key Protein That Drives Aging


People are always trying out different techniques and supplements to combat aging signs. A new study has now suggested that a simple supplement could potentially accelerate anti-aging in humans.

The study, published in the journal PLOS Biology, found loss of a protein called Menin could be responsible for the aging process, and a dietary supplement of D-serine could reverse it in mice.

The study focused on hypothalamic Menin. The hypothalamus is part of the brain that acts as a mediator of physiological aging. It does so by increasing neuroinflammatory signaling over time. Further, inflammation encourages multiple age-related processes, both in the brain and the periphery.

“We speculate that the decline of Menin expression in the hypothalamus with age may be one of the driving factors of aging, and Menin may be the key protein connecting the genetic, inflammatory, and metabolic factors of aging. D-serine is a potentially promising therapeutic for cognitive decline,” Lige Leng of Xiamen University, Xiamen, China, and study author, said, SciTechDaily reported.

For the study, researchers created conditional knockout mice, which have reduced Menin activity. Reduction of Menin in younger mice increased hypothalamic neuroinflammation as well as aging-related phenotypes, such as reductions in bone mass and skin thickness, cognitive decline, and modestly reduced lifespan, the study found.

Moreover, loss of Menin was also found to induce a decline in levels of the amino acid D-serine. A neurotransmitter, D-serine is found in soybeans, eggs, fish, and nuts, and is also available as a dietary supplement. According to researchers, the downslide in the production of the amino acid was due to the loss of activity of an enzyme involved in its synthesis (which was in turn regulated by Menin).

In the experiment, the study authors delivered the gene for Menin into the hypothalamus of elderly (20-month-old) mice. It was found 30 days later that the mice showed improved skin thickness, bone mass, learning, cognition, and balance, which was in tandem with an increase in D-serine within the hippocampus–a region of the brain critical for learning and memory.

Similar benefits on cognition, not including the peripheral signs of aging, could be observed by undergoing three weeks of dietary supplementation with D-serine, as per the outlet.

“Ventromedial hypothalamus (VMH) Menin signaling diminished in aged mice, which contributes to systemic aging phenotypes and cognitive deficits. The effects of Menin on aging are mediated by neuroinflammatory changes and metabolic pathway signaling, accompanied by serine deficiency in VMH, while restoration of Menin in VMH reversed aging-related phenotypes,” Leng explained.

While on the topic of anti-aging, a drug prescribed for the treatment of type 2 diabetes is being used off-label as an anti-aging medication. Metformin belongs to a class of drugs called biguanides. However, there are no proven studies to support these claims.





Source link

Continue Reading

Health

Healthy Pets And Hospitalized Humans May Transmit Drug-Resistant Microbes To Each Other, Study Shows

Published

on

LA Offers Free COVID-19 Testing For Pets Exposed To Virus


A new, revealing study has found healthy dogs and cats can transmit multidrug-resistant organisms to their hospitalized owners and vice versa.

The study is being presented at this year’s European Congress of Clinical Microbiology & Infectious Diseases in Copenhagen, Denmark.

Led by Dr. Carolin Hackmann from Charité University Hospital Berlin, Germany, the study enrolled more than 2,800 hospital patients and their pets to test their hypothesis.

“Our findings verify that the sharing of multidrug-resistant organisms between companion animals and their owners is possible,” said Dr. Hackmann, SciTechDaily reported. “However, we identified only a handful of cases suggesting that neither cat nor dog ownership is an important risk factor for multidrug-resistant organism colonization in hospital patients.”

Antimicrobial resistance refers to the increased resilience of infection-causing microbes to the drugs used to kill them. As per the outlet, antimicrobial-resistant infections were responsible for more than 1.3 million deaths, and were connected to 5 million deaths across the globe in 2019.

For the study, researchers focused on the most common superbugs found in hospital patients–methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, 3rd generation cephalosporin-resistant Enterobacterales and carbapenem-resistant Enterobacterales.

Called multidrug-resistant organisms (MDROs), these bacteria are resistant to treatment with more than one antibiotic.

In the study, nasal and rectal swabs were collected from around 3000 patients hospitalized in Charité University Hospital, Berlin, as well as from any dogs and cats that lived in their households.

The presence of the type of bacteria was identified by genetic sequencing.

Following analysis, it was found 30% of hospital patients tested positive for MDROs, and 70% tested negative. Furthermore, among those who tested MDRO-positive, the rate of dog ownership and cat ownership was 11% and 9% respectively. The figure was 13% in MDRO-negatives.

Moreover, all pet owners were requested to collect and send throat and stool swab samples of their pets. And 300 pet owners sent back samples from 400 pets. It was found 15% of dogs and 5% of cats tested positive for at least one MDRO.

“Although the level of sharing between hospital patients and their pets in our study is very low, carriers can shed bacteria into their environment for months, and they can be a source of infection for other more vulnerable people in the hospital such as those with a weak immune system and the very young or old,” Dr. Hackmann concluded, according to The Guardian.

In other news, an animal shelter in Luzerne County, Pennsylvania, has temporarily shut down after dozens of dogs contracted canine influenza.

“A few of our dogs started to get diarrhea, but that’s pretty normal for dogs that are in a new stressful environment. When our longer-term dogs started to get diarrhea and started not wanting to eat, we realized they weren’t themselves, that’s when we knew something was wrong,” shelter volunteer Emma Ripka said.





Source link

Continue Reading

Copyright © 2021 Vitamin Patches Online.