Connect with us

Tech

How beauty filters took over social media

Published

on

How beauty filters took over social media


There are thousands of distortion filters available on major social platforms, with names like La Belle, Natural Beauty, and Boss Babe. Even the goofy Big Mouth on Snapchat, one of social media’s most popular filters, is made with distortion effects.

In October 2019, Facebook banned distortion effects because of “public debate about potential negative impact.” Awareness of body dysmorphia was rising, and a filter called FixMe, which allowed users to mark up their faces as a cosmetic surgeon might, had sparked a surge of criticism for encouraging plastic surgery. But in August 2020, the effects were re-released with a new policy banning filters that explicitly promoted surgery. Effects that resize facial features, however, are still allowed. (When asked about the decision, a spokesperson directed me to Facebook’s press release from that time.)

When the effects were re-released, Rocha decided to take a stand and began posting condemnations of body shaming online. She committed to stop using deformation effects herself unless they are clearly humorous or dramatic rather than beautifying and says she didn’t want to “be responsible” for the harmful effects some filters were having on women: some, she says, have looked into getting plastic surgery that makes them look like their filtered self.

“I wish I was wearing a filter right now”

Krista Crotty is a clinical education specialist at the Emily Program, a leading center on eating disorders and mental health based in St. Paul, Minnesota. Much of her job over the past five years has focused on educating patients about how to consume media in a healthier way. She says that when patients present themselves differently online and in person, she sees an increase in anxiety. “People are putting up information about themselves—whether it’s size, shape, weight, whatever—that isn’t anything like what they actually look like,” she says. “In between that authentic self and digital self lives a lot of anxiety, because it’s not who you really are. You don’t look like the photos that have been filtered.”

 “There’s just somewhat of a validation when you’re meeting that standard, even if it’s only for a picture.”

For young people, who are still working out who they are, navigating between a digital and authentic self can be particularly complicated, and it’s not clear what the long-term consequences will be.

“Identity online is kind of like an artifact, almost,” says Claire Pescott, the researcher from the University of South Wales. “It’s a kind of projected image of yourself.”

Pescott’s observations of children have led her to conclude that filters can have a positive impact on them. “They can kind of try out different personas,” she explains. “They have these ‘of the moment’ identities that they could change, and they can evolve with different groups.”

A screenshot from the Instagram Effects gallery. These are some of the top filters in the “selfies” category.

But she doubts that all young people are able to understand how filters affect their sense of self. And she’s concerned about the way social media platforms grant immediate validation and feedback in the form of likes and comments. Young girls, she says, have particular difficulty differentiating between filtered photos and ordinary ones.

Pescott’s research also revealed that while children are now often taught about online behavior, they receive “very little education” about filters. Their safety training “was linked to overt physical dangers of social media, not the emotional, more nuanced side of social media,” she says, “which I think is more dangerous.”

Bailenson expects that we can learn about some of these emotional unknowns from established VR research. In virtual environments, people’s behavior changes with the physical characteristics of their avatar, a phenomenon called the Proteus effect. Bailenson found, for example, that people who had taller avatars were more likely to behave confidently than those with shorter avatars. “We know that visual representations of the self, when used in a meaningful way during social interactions, do change our attitudes and behaviors,” he says.

But sometimes those actions can play on stereotypes. A well-known study from 1988 found that athletes who wore black uniforms were more aggressive and violent while playing sports than those wearing white uniforms. And this translates to the digital world: one recent study showed that video game players who used avatars of the opposite sex actually behaved in a way that was gender stereotypical.

Bailenson says we should expect to see similar behavior on social media as people adopt masks based on filtered versions of their own faces, rather than entirely different characters. “The world of filtered video, in my opinion—and we haven’t tested this yet—is going to behave very similarly to the world of filtered avatars,” he says.

Selfie regulation

Considering the power and pervasiveness of filters, there is very little hard research about their impact—and even fewer guardrails around their use.

I asked Bailenson, who is the father of two young girls, how he thinks about his daughters’ use of AR filters. “It’s a real tough one,” he says, “because it goes against everything that we’re taught in all of our basic cartoons, which is ‘Be yourself.’”

Bailenson also says that playful use is different from real-time, constant augmentation of ourselves, and understanding what these different contexts mean for kids is important.

“Even though we know it’s not real… We still have that aspiration to look that way.”

What few regulations and restrictions there are on filter use rely on companies to police themselves. Facebook’s filters, for example, have to go through an approval process that, according to the spokesperson, uses “a combination of human and automated systems to review effects as they are submitted for publishing.” They are reviewed for certain issues, such as hate speech or nudity, and users are also able to report filters, which then get manually reviewed.

The company says it consults regularly with expert groups, such as the National Eating Disorders Association and the JED Foundation, a mental-health nonprofit.

“We know people may feel pressure to look a certain way on social media, and we’re taking steps to address this across Instagram and Facebook,” said a statement from Instagram. “We know effects can play a role, so we ban ones that clearly promote eating disorders or that encourage potentially dangerous cosmetic surgery procedures… And we’re working on more products to help reduce the pressure people may feel on our platforms, like the option to hide like counts.”

Facebook and Snapchat also label filtered photos to show that they’ve been transformed—but it’s easy to get around the labels by simply applying the edits outside of the apps, or by downloading and reuploading a filtered photo.

Labeling might be important, but Pescott says she doesn’t think it will dramatically improve an unhealthy beauty culture online.

“I don’t know whether it would make a huge amount of difference, because I think it’s the fact we’re seeing it, even though we know it’s not real. We still have that aspiration to look that way,” she says. Instead, she believes that the images children are exposed to should be more diverse, more authentic, and less filtered.

There’s another concern, too, especially since the majority of users are very young: the amount of biometric data that TikTok, Snapchat and Facebook have collected through these filters. Though both Facebook and Snapchat say they do not use filter technology to collect personally identifiable data, a review of their privacy policies shows that they do indeed have the right to store data from the photographs and videos on the platforms. Snapchat’s policy says that snaps and chats are deleted from its servers once the message is opened or expires, but stories are stored longer. Instagram stores photo and video data as long as it wants or until the account is deleted; Instagram also collects data on what users see through its camera.

Meanwhile, these companies continue to concentrate on AR. In a speech made to investors in February 2021, Snapchat co-founder Evan Spiegel said “our camera is already capable of extraordinary things. But it is augmented reality that’s driving our future”, and the company is “doubling down” on augmented reality in 2021, calling the technology “a utility”.

And while both Facebook and Snapchat say that the facial detection systems behind filters don’t connect back to the identity of users, it’s worth remembering that Facebook’s smart photo tagging feature—which looks at your pictures and tries to identify people who might be in them—was one of the earliest large-scale commercial uses of facial recognition. And TikTok recently settled for $92 million in a lawsuit that alleged the company was misusing facial recognition for ad targeting. A spokesperson from Snapchat said “Snap’s Lens product does not collect any identifiable information about a user and we can’t use it to tie back to, or identify, individuals.”

And Facebook in particular sees facial recognition as part of it’s AR strategy. In a January 2021 blog post titled “No Looking Back,” Andrew Bosworth, the head of Facebook Reality Labs, wrote: “It’s early days, but we’re intent on giving creators more to do in AR and with greater capabilities.” The company’s planned release of AR glasses is highly anticipated, and it has already teased the possible use of facial recognition as part of the product.

In light of all the effort it takes to navigate this complex world, Sophia and Veronica say they just wish they were better educated about beauty filters. Besides their parents, no one ever helped them make sense of it all. “You shouldn’t have to get a specific college degree to figure out that something could be unhealthy for you,” Veronica says.

Tech

Why I became a TechTrekker

Published

on

group jumps into the air with snowy mountains in the background


My senior spring in high school, I decided to defer my MIT enrollment by a year. I had always planned to take a gap year, but after receiving the silver tube in the mail and seeing all my college-bound friends plan out their classes and dorm decor, I got cold feet. Every time I mentioned my plans, I was met with questions like “But what about school?” and “MIT is cool with this?”

Yeah. MIT totally is. Postponing your MIT start date is as simple as clicking a checkbox. 

Sofia Pronina (right) was among those who hiked to the Katla Glacier during this year’s TechTrek to Iceland.

COURTESY PHOTO

Now, having finished my first year of classes, I’m really grateful that I stuck with my decision to delay MIT, as I realized that having a full year of unstructured time is a gift. I could let my creative juices run. Pick up hobbies for fun. Do cool things like work at an AI startup and teach myself how to create latte art. My favorite part of the year, however, was backpacking across Europe. I traveled through Austria, Slovakia, Russia, Spain, France, the UK, Greece, Italy, Germany, Poland, Romania, and Hungary. 

Moreover, despite my fear that I’d be losing a valuable year, traveling turned out to be the most productive thing I could have done with my time. I got to explore different cultures, meet new people from all over the world, and gain unique perspectives that I couldn’t have gotten otherwise. My travels throughout Europe allowed me to leave my comfort zone and expand my understanding of the greater human experience. 

“In Iceland there’s less focus on hustle culture, and this relaxed approach to work-life balance ends up fostering creativity. This was a wild revelation to a bunch of MIT students.”

When I became a full-time student last fall, I realized that StartLabs, the premier undergraduate entrepreneurship club on campus, gives MIT undergrads a similar opportunity to expand their horizons and experience new things. I immediately signed up. At StartLabs, we host fireside chats and ideathons throughout the year. But our flagship event is our annual TechTrek over spring break. In previous years, StartLabs has gone on TechTrek trips to Germany, Switzerland, and Israel. On these fully funded trips, StartLabs members have visited and collaborated with industry leaders, incubators, startups, and academic institutions. They take these treks both to connect with the global startup sphere and to build closer relationships within the club itself.

Most important, however, the process of organizing the TechTrek is itself an expedited introduction to entrepreneurship. The trip is entirely planned by StartLabs members; we figure out travel logistics, find sponsors, and then discover ways to optimize our funding. 

two students soaking in a hot spring in Iceland

COURTESY PHOTO

In organizing this year’s trip to Iceland, we had to learn how to delegate roles to all the planners and how to maintain morale when making this trip a reality seemed to be an impossible task. We woke up extra early to take 6 a.m. calls with Icelandic founders and sponsors. We came up with options for different levels of sponsorship, used pattern recognition to deduce the email addresses of hundreds of potential contacts at organizations we wanted to visit, and all got scrappy with utilizing our LinkedIn connections.

And as any good entrepreneur must, we had to learn how to be lean and maximize our resources. To stretch our food budget, we planned all our incubator and company visits around lunchtime in hopes of getting fed, played human Tetris as we fit 16 people into a six-person Airbnb, and emailed grocery stores to get their nearly expired foods for a discount. We even made a deal with the local bus company to give us free tickets in exchange for a story post on our Instagram account. 

Continue Reading

Tech

The Download: spying keyboard software, and why boring AI is best

Published

on

🧠


This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.

How ubiquitous keyboard software puts hundreds of millions of Chinese users at risk

For millions of Chinese people, the first software they download onto devices is always the same: a keyboard app. Yet few of them are aware that it may make everything they type vulnerable to spying eyes. 

QWERTY keyboards are inefficient as many Chinese characters share the same latinized spelling. As a result, many switch to smart, localized keyboard apps to save time and frustration. Today, over 800 million Chinese people use third-party keyboard apps on their PCs, laptops, and mobile phones. 

But a recent report by the Citizen Lab, a University of Toronto–affiliated research group, revealed that Sogou, one of the most popular Chinese keyboard apps, had a massive security loophole. Read the full story. 

—Zeyi Yang

Why we should all be rooting for boring AI

Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. It hopes they could improve intelligence and operational planning. 

But those might not be the right use cases, writes our senior AI reporter Melissa Heikkila. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases. 

Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. The DoD’s best bet is to apply generative AI to more mundane things like Excel, email, or word processing. Read the full story. 

This story is from The Algorithm, Melissa’s weekly newsletter giving you the inside track on all things AI. Sign up to receive it in your inbox every Monday.

The ice cores that will let us look 1.5 million years into the past

To better understand the role atmospheric carbon dioxide plays in Earth’s climate cycles, scientists have long turned to ice cores drilled in Antarctica, where snow layers accumulate and compact over hundreds of thousands of years, trapping samples of ancient air in a lattice of bubbles that serve as tiny time capsules. 

By analyzing those cores, scientists can connect greenhouse-gas concentrations with temperatures going back 800,000 years. Now, a new European-led initiative hopes to eventually retrieve the oldest core yet, dating back 1.5 million years. But that impressive feat is still only the first step. Once they’ve done that, they’ll have to figure out how they’re going to extract the air from the ice. Read the full story.

—Christian Elliott

This story is from the latest edition of our print magazine, set to go live tomorrow. Subscribe today for as low as $8/month to ensure you receive full access to the new Ethics issue and in-depth stories on experimental drugs, AI assisted warfare, microfinance, and more.

The must-reads

I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.

1 How AI got dragged into the culture wars
Fears about ‘woke’ AI fundamentally misunderstand how it works. Yet they’re gaining traction. (The Guardian
+ Why it’s impossible to build an unbiased AI language model. (MIT Technology Review)
 
2 Researchers are racing to understand a new coronavirus variant 
It’s unlikely to be cause for concern, but it shows this virus still has plenty of tricks up its sleeve. (Nature)
Covid hasn’t entirely gone away—here’s where we stand. (MIT Technology Review)
+ Why we can’t afford to stop monitoring it. (Ars Technica)
 
3 How Hilary became such a monster storm
Much of it is down to unusually hot sea surface temperatures. (Wired $)
+ The era of simultaneous climate disasters is here to stay. (Axios)
People are donning cooling vests so they can work through the heat. (Wired $)
 
4 Brain privacy is set to become important 
Scientists are getting better at decoding our brain data. It’s surely only a matter of time before others want a peek. (The Atlantic $)
How your brain data could be used against you. (MIT Technology Review)
 
5 How Nvidia built such a big competitive advantage in AI chips
Today it accounts for 70% of all AI chip sales—and an even greater share for training generative models. (NYT $)
The chips it’s selling to China are less effective due to US export controls. (Ars Technica)
+ These simple design rules could turn the chip industry on its head. (MIT Technology Review)
 
6 Inside the complex world of dissociative identity disorder on TikTok 
Reducing stigma is great, but doctors fear people are self-diagnosing or even imitating the disorder. (The Verge)
 
7 What TikTok might have to give up to keep operating in the US
This shows just how hollow the authorities’ purported data-collection concerns really are. (Forbes)
 
8 Soldiers in Ukraine are playing World of Tanks on their phones
It’s eerily similar to the war they are themselves fighting, but they say it helps them to dissociate from the horror. (NYT $)
 
9 Conspiracy theorists are sharing mad ideas on what causes wildfires
But it’s all just a convoluted way to try to avoid having to tackle climate change. (Slate $)
 
10 Christie’s accidentally leaked the location of tons of valuable art 🖼📍
Seemingly thanks to the metadata that often automatically attaches to smartphone photos. (WP $)

Quote of the day

“Is it going to take people dying for something to move forward?”

—An anonymous air traffic controller warns that staffing shortages in their industry, plus other factors, are starting to threaten passenger safety, the New York Times reports.

The big story

Inside effective altruism, where the far future counts a lot more than the present

" "

VICTOR KERLOW

October 2022

Since its birth in the late 2000s, effective altruism has aimed to answer the question “How can those with means have the most impact on the world in a quantifiable way?”—and supplied methods for calculating the answer.

It’s no surprise that effective altruisms’ ideas have long faced criticism for reflecting white Western saviorism, alongside an avoidance of structural problems in favor of abstract math. And as believers pour even greater amounts of money into the movement’s increasingly sci-fi ideals, such charges are only intensifying. Read the full story.

—Rebecca Ackermann

We can still have nice things

A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)

+ Watch Andrew Scott’s electrifying reading of the 1965 commencement address ‘Choose One of Five’ by Edith Sampson.
+ Here’s how Metallica makes sure its live performances ROCK. ($)
+ Cannot deal with this utterly ludicrous wooden vehicle
+ Learn about a weird and wonderful new instrument called a harpejji.



Continue Reading

Tech

Why we should all be rooting for boring AI

Published

on

Why we should all be rooting for boring AI


This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

I’m back from a wholesome week off picking blueberries in a forest. So this story we published last week about the messy ethics of AI in warfare is just the antidote, bringing my blood pressure right back up again. 

Arthur Holland Michel does a great job looking at the complicated and nuanced ethical questions around warfare and the military’s increasing use of artificial-intelligence tools. There are myriad ways AI could fail catastrophically or be abused in conflict situations, and there don’t seem to be any real rules constraining it yet. Holland Michel’s story illustrates how little there is to hold people accountable when things go wrong.  

Last year I wrote about how the war in Ukraine kick-started a new boom in business for defense AI startups. The latest hype cycle has only added to that, as companies—and now the military too—race to embed generative AI in products and services. 

Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. 

The department sees tons of potential to “improve intelligence, operational planning, and administrative and business processes.” 

But Holland Michel’s story highlights why the first two use cases might be a bad idea. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.  

Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. Everyone agrees that humans should make the final call, but that is made harder by technology that acts unpredictably, especially in fast-moving conflict situations. 

Some worry that the people lowest on the hierarchy will pay the highest price when things go wrong: “In the event of an accident—regardless of whether the human was wrong, the computer was wrong, or they were wrong together—the person who made the ‘decision’ will absorb the blame and protect everyone else along the chain of command from the full impact of accountability,” Holland Michel writes. 

The only ones who seem likely to face no consequences when AI fails in war are the companies supplying the technology.

It helps companies when the rules the US has set to govern AI in warfare are mere recommendations, not laws. That makes it really hard to hold anyone accountable. Even the AI Act, the EU’s sweeping upcoming regulation for high-risk AI systems, exempts military uses, which arguably are the highest-risk applications of them all. 

While everyone is looking for exciting new uses for generative AI, I personally can’t wait for it to become boring. 

Amid early signs that people are starting to lose interest in the technology, companies might find that these sorts of tools are better suited for mundane, low-risk applications than solving humanity’s biggest problems.

Applying AI in, for example, productivity software such as Excel, email, or word processing might not be the sexiest idea, but compared to warfare it’s a relatively low-stakes application, and simple enough to have the potential to actually work as advertised. It could help us do the tedious bits of our jobs faster and better.

Boring AI is unlikely to break as easily and, most important, won’t kill anyone. Hopefully, soon we’ll forget we’re interacting with AI at all. (It wasn’t that long ago when machine translation was an exciting new thing in AI. Now most people don’t even think about its role in powering Google Translate.) 

That’s why I’m more confident that organizations like the DoD will find success applying generative AI in administrative and business processes. 

Boring AI is not morally complex. It’s not magic. But it works. 

Deeper Learning

AI isn’t great at decoding human emotions. So why are regulators targeting the tech?

Amid all the chatter about ChatGPT, artificial general intelligence, and the prospect of robots taking people’s jobs, regulators in the EU and the US have been ramping up warnings against AI and emotion recognition. Emotion recognition is the attempt to identify a person’s feelings or state of mind using AI analysis of video, facial images, or audio recordings. 

But why is this a top concern? Western regulators are particularly concerned about China’s use of the technology, and its potential to enable social control. And there’s also evidence that it simply does not work properly. Tate Ryan-Mosley dissected the thorny questions around the technology in last week’s edition of The Technocrat, our weekly newsletter on tech policy.

Bits and Bytes

Meta is preparing to launch free code-generating software
A version of its new LLaMA 2 language model that is able to generate programming code will pose a stiff challenge to similar proprietary code-generating programs from rivals such as OpenAI, Microsoft, and Google. The open-source program is called Code Llama, and its launch is imminent, according to The Information. (The Information

OpenAI is testing GPT-4 for content moderation
Using the language model to moderate online content could really help alleviate the mental toll content moderation takes on humans. OpenAI says it’s seen some promising first results, although the tech does not outperform highly trained humans. A lot of big, open questions remain, such as whether the tool can be attuned to different cultures and pick up context and nuance. (OpenAI)

Google is working on an AI assistant that offers life advice
The generative AI tools could function as a life coach, offering up ideas, planning instructions, and tutoring tips. (The New York Times)

Two tech luminaries have quit their jobs to build AI systems inspired by bees
Sakana, a new AI research lab, draws inspiration from the animal kingdom. Founded by two prominent industry researchers and former Googlers, the company plans to make multiple smaller AI models that work together, the idea being that a “swarm” of programs could be as powerful as a single large AI model. (Bloomberg)

Continue Reading

Copyright © 2021 Vitamin Patches Online.