Tech
Mapping the atmosphere on Mars can help advance science on our own planet
Published
3 years agoon
By
Terry Power
The Hope probe has three main objectives, the first is to understand the lower Martian atmosphere and its weather and climate. Yousuf continues, “The second objective is to correlate the lower atmosphere conditions with the upper atmosphere to explain how weather changes the escape of hydrogen and oxygen. And the final objective that we have is to understand the structure and variability of hydrogen and oxygen in the upper atmosphere and why Mars is losing them into space.”
The focus on space for the UAE comes at an important time as mapping Mars will contribute to the work of not just the knowledge economy of the UAE, but advance science for the whole world. “The UAE is basically investing in space, as investing in the space sector means investing in the human capital towards a better future for all,” says Yousuf.
This episode of Business Lab is produced in association with the UAE Pavilion Expo 2020 Dubai.
Show notes and references
Meet the Emirati engineers of Hope Probe Mars Mission, Gulf News, February 10, 2021
Full transcript:
Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma. And this is Business Lab. The show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.
Our topic today is the Emirates Mars Mission, also known as the Hope Probe. Hope aims to be the first probe to provide a complete picture of the Martian atmosphere and its layers. The data collected by Hope will help answer key questions about the global Martian atmosphere and the loss of hydrogen and oxygen gases into space over the span of one Martian year.
Two words for you, space data.
My guest today is Maryam Yousuf, who is a data analyst for the Emirates Mars Mission.
This podcast is produced in association with UAE Pavilion Expo 2020 Dubai.
Welcome, Maryam.
Maryam: Hi, Laurel. Thank you for having me.
Laurel: To begin with, I want to congratulate you and your team. The United Arab Emirates is the fifth country in history to reach Mars and only the seventh in the world to reach the orbit of another planet. And to top it all off, the performance of the spacecraft is exceeding expectations. What does this mean for the UAE? And what kind of impact is it having on the UAE’s aspiring scientists?
Maryam: Thank you for the congratulations. And it’s for everyone, I think, having this mission to go to Mars and get the unique data that we have. Hope Probe is the vision of the late founder of the Emirates, Sheikh Zayed bin Sultan Al Nahyan, where he envisioned the UAE leading in the sector one day. One of the predominant project goals is developing the science and technology sectors within the UAE, in terms of capacity building and forging new pathways for the younger generations in research and development in the natural sciences domains, as they lay the foundation for any space exploration initiative in the future.
Laurel: That is very inspiring. The UAE’s Mohammed Bin Rashid Space Center with the international Mars science community is defining the objectives for the mission. What are those objectives and how will they further international goals to understand Mars?
Maryam: The Emirates Mars Mission will be the first mission to provide the full global picture of the Martian atmosphere. So three scientific objectives. The first objective is to characterize the Martian lower atmosphere to understand the climate dynamic and the global weather map. The second objective is to correlate the lower atmosphere conditions with the upper atmosphere to explain how weather changes the escape of hydrogen and oxygen. And the final objective that we have is to understand the structure and variability of hydrogen and oxygen in the upper atmosphere and why Mars is losing them into space.
Laurel: No small feats. These are big goals, for sure. Hope aims to provide the first comprehensive picture of Mars’ climate and atmosphere. Hope’s unique 25-degree elliptical orbit enables it to collect data and high-resolution images of the planet’s atmosphere every 225 hours or 9.5 days. What data is the Hope Probe collecting? How does it actually collect it?
Maryam: We have three instruments on board of Hope Probe. Two are studying the lower atmosphere and one is studying the upper atmosphere. If we speak about those that are studying the lower atmosphere, we have the Emirates Exploration Imager or EXI, which is a digital camera that is capable of taking 12-megapixel images while maintaining the radiometric calibration needed for the detailed scientific analysis. It will capture high resolution images of Mars, which is the RGB. And then it will measure optical depth of water ice at the range of 305 to 335 nanometers. And it will also measure the abundance of ozone at the range of 245 to 275 nanometers. All this is basically the ultraviolet bands.
The second instrument, which is the Emirates Mars Infrared Spectrometer or EMIRS, collects its data from the lower atmosphere. It is an interferometric thermal infrared spectrometer that will give a better understanding of the energy balance in the current Martian climate by characterizing the state of the lower atmosphere and the processes that are driving the global circulation. It’ll measure both the surface and the atmospheric temperatures, as well as the optical depths of water ice, and dust, and the abundance of water vapor. All of this will be measured from 6 to 40 plus micrometers.
For the upper atmosphere, we have the final instrument, which is the Emirates Mars Ultraviolet Spectrometer, which is EMUS. It is a far ultraviolet spectrometer that will measure oxygen and carbon monoxide and the thermosphere, and then it will measure the variability of the hydrogen and oxygen and the upper atmosphere.
Laurel: That absolutely is comprehensive. It will have a really good idea of a map of Mars from everything, from the surface to the atmosphere.
Maryam: Yeah.
Laurel: As a data analyst on the Mars Probe, what is your job like? How do you analyze so much data, and what are you looking for?
Maryam: For me personally, I only use EMIRS data for now. I basically study the impact of varying atmosphere conditions to the lower atmosphere on the out thermo-physical properties, on the Martian surface. And the thermo-physical properties are the properties that affect the energy budget itself.
All the instruments that we have on board of the Hope Probe are built on heritage data, which means we built the instruments based on the instruments used during previous Mars missions. When it comes to EMIRS specifically, we can use data from the Thermal Emission Spectrometer (TES), which was on board of the Mars Global Surveyor and before the launch and so on, I used to build my code and models using TES data. Now I basically use EMIRS instead of TES.
Laurel: That’s pretty exciting. You came to the mission itself as a recent graduate with a background in biomedical engineering and now you’re exploring space data from Mars. How have you been able to use your own analytic skills to make that transition?
Maryam: It was very challenging, but I like to challenge myself, and I like to seize any opportunity that is presented to me. So when this opportunity was there, I was like, why not? Because everything that we need to know, we can learn it from experts or we can learn it online. I challenged myself by learning programming, which is Python language, through online courses and online sources available that we can get our hands on. And then when it comes to the science, the space science in particular, the Emirates Mars mission was built on a knowledge transfer program. So we have experts from the United States that monitor the project that we’re working on. So, I have mentors that teach me about all this amazing space science that relates to Mars as well.
Laurel: That is amazing because this data will actually help the entire planet address climate change. Correct?
Maryam: I wouldn’t say there is a known correlation between earth and Mars. But Mars, billions of years ago, had a very similar atmosphere to earth. It had a warm, wet, and thick atmosphere that was capable of accommodating life. Now it’s basically dry, cold, and it has a very thin atmosphere. When we understand the evolution and what’s currently happening to Mars that might aid us in answering questions like, what happened and what could happen to our own planet. So yeah, I can’t really pinpoint the correlation between both the planets, but exploring other planets might help us in understanding our own planet.
Laurel: That’s a very good point for clarification. Thank you. The Emirates Mars Mission is unique, in that the troves of data collected by Hope are being released to the public. So that means anyone — me, our listeners, and more importantly, scientists based in more than 200 universities and research institutes globally — can go to the Mission’s website and register to access the data. Why is this important to the Mission, that all of the data be available at this scale?
Maryam: As a team, we have our objectives and hypothesis that we want to achieve or confirm. And when we share the data with everyone, they add on their knowledge and perspective to our current understanding. This contributes to a more knowledge-based economy and fosters the science community’s capabilities as a collective. This step was taken to encourage the science community to break the barriers and work together for the greater good.
Laurel: Releasing all of this data in an open way and sharing it is certainly going to be exciting to young scientists and engineers and people around the world who are perhaps looking for different kinds of data sets to experiment with. What do you think it means to do this in such a collaborative way?
Maryam: A lot of things come from this. If we talk about the UAE community itself, we do a lot of outreach activities here, and we get approached by the youth and even researchers within the UAE that have used the data itself for their own projects or research. So that’s one of the program objectives is basically to encourage more people to be involved in the STEM fields and so on. Another thing is when we go to conferences and other people will come to us and they basically want to collaborate, and they want to make a connection between their own projects and our projects and basically the objectives or whatever we’re seeing with the data. For example, maybe they had a hypothesis about it and they want to confirm it through our data because we have such unique data. So that’s really exciting. And the more we see people are into using our data, we basically want to produce the data as soon as we can.
Laurel: To keep that excitement going. Yeah.
Maryam: Yep.
Laurel: Before Hope even arrived at Mars, the probe was gathering valuable data. In November 2020, the European spacecraft, BepiColombo, was headed to Mercury. Both BepiColombo and Hope instruments were facing each other, so scientists took the opportunity to measure the amount of hydrogen between the two probes. What other unexpected opportunities has the mission encountered?
Maryam: Another observation that we haven’t put our mind into is basically with the EMUS instrument. The EMUS instrument is very sensitive when it comes to the EUV, the extreme ultraviolet bands. So this basically allows us to see the discrete Aurora and this is basically not from our objectives. From about 400 observations that we’ve seen, we saw discrete Aurora more than 60% of the time. And that wasn’t an expectation that we had or something any other mission has seen before. So, yeah, that was exciting for us.
Laurel: Speaking of other observations, the Hope Probe has made a number of them, right? With the Martian atmospheric phenomenon, including discrete aurora on Mars’ nightside, remarkable concentrations of oxygen and carbon monoxide, and never-before seen images of Martian dust storms. When you see this data and the images come in, which one of these, or perhaps there are other events, has caused everyone to sit up and say, “Wow, that is from Mars. No one’s ever seen that before. And we’re the first ones.”
Maryam: I’d have to speak about myself on this one. Personally, I find dust storms very fascinating. One, because I live in a country that has a tropical desert environment, which means dust storms are very common here. Every time it becomes very dusty here, I wonder if it’s the same thing that’s happening on Mars atmosphere or not. But if I speak about the team, I can tell you that we see all observations of value and impact.
Laurel: Oh, I’m sure. How is the success of Hope fueling other space exploration initiatives by the UAE? Because this has been successful, what else is possible?
Maryam: The Emirates Mars Mission is just the beginning of exploring the frontiers of space. Hope Probe is the gateway to space exploration in the UAE. So currently the UAE is working on multiple initiatives in the space sector, such as the UAE Astronaut program, which prepares Emirate astronauts for scientific space exploration missions. And the new Emirati interplanetary mission, which involves an expedition to the orbit of Venus followed by an exploration of the asteroid belt, which is beyond Mars. And then in addition, we have the Emirates Lunar Mission that is launching Rashid rover by the end of this year. So that’s really exciting for us. The UAE is basically investing in space, as investing in the space sector means investing in the human capital towards a better future for all.
Laurel: Maryam, thank you very much for joining us today on Business Lab.
Maryam: Thank you for having me.
Laurel: That was Maryam Yousef, a data analyst for the Emirates Mars Mission, who I spoke with from Cambridge, Massachusetts, the home of MIT and MIT Technology Review, overlooking the Charles River.
That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology. And you can find us in print, on the web, and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.
This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Collective Next. Thanks for listening.
This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.
You may like
-
The Download: how AI is changing science, and limits on White House contact with tech firms
-
Eric Schmidt: This is how AI will transform how science gets done
-
This technology could alter the entire planet. These groups want every nation to have a say.
-
The science behind AI-first transformations
-
What’s next in the metaverse: From science fiction to reality
-
To Inhale Or Swallow? Mapping Out The Direction Of Future COVID-19 Vaccines
My senior spring in high school, I decided to defer my MIT enrollment by a year. I had always planned to take a gap year, but after receiving the silver tube in the mail and seeing all my college-bound friends plan out their classes and dorm decor, I got cold feet. Every time I mentioned my plans, I was met with questions like “But what about school?” and “MIT is cool with this?”
Yeah. MIT totally is. Postponing your MIT start date is as simple as clicking a checkbox.
Now, having finished my first year of classes, I’m really grateful that I stuck with my decision to delay MIT, as I realized that having a full year of unstructured time is a gift. I could let my creative juices run. Pick up hobbies for fun. Do cool things like work at an AI startup and teach myself how to create latte art. My favorite part of the year, however, was backpacking across Europe. I traveled through Austria, Slovakia, Russia, Spain, France, the UK, Greece, Italy, Germany, Poland, Romania, and Hungary.
Moreover, despite my fear that I’d be losing a valuable year, traveling turned out to be the most productive thing I could have done with my time. I got to explore different cultures, meet new people from all over the world, and gain unique perspectives that I couldn’t have gotten otherwise. My travels throughout Europe allowed me to leave my comfort zone and expand my understanding of the greater human experience.
“In Iceland there’s less focus on hustle culture, and this relaxed approach to work-life balance ends up fostering creativity. This was a wild revelation to a bunch of MIT students.”
When I became a full-time student last fall, I realized that StartLabs, the premier undergraduate entrepreneurship club on campus, gives MIT undergrads a similar opportunity to expand their horizons and experience new things. I immediately signed up. At StartLabs, we host fireside chats and ideathons throughout the year. But our flagship event is our annual TechTrek over spring break. In previous years, StartLabs has gone on TechTrek trips to Germany, Switzerland, and Israel. On these fully funded trips, StartLabs members have visited and collaborated with industry leaders, incubators, startups, and academic institutions. They take these treks both to connect with the global startup sphere and to build closer relationships within the club itself.
Most important, however, the process of organizing the TechTrek is itself an expedited introduction to entrepreneurship. The trip is entirely planned by StartLabs members; we figure out travel logistics, find sponsors, and then discover ways to optimize our funding.
In organizing this year’s trip to Iceland, we had to learn how to delegate roles to all the planners and how to maintain morale when making this trip a reality seemed to be an impossible task. We woke up extra early to take 6 a.m. calls with Icelandic founders and sponsors. We came up with options for different levels of sponsorship, used pattern recognition to deduce the email addresses of hundreds of potential contacts at organizations we wanted to visit, and all got scrappy with utilizing our LinkedIn connections.
And as any good entrepreneur must, we had to learn how to be lean and maximize our resources. To stretch our food budget, we planned all our incubator and company visits around lunchtime in hopes of getting fed, played human Tetris as we fit 16 people into a six-person Airbnb, and emailed grocery stores to get their nearly expired foods for a discount. We even made a deal with the local bus company to give us free tickets in exchange for a story post on our Instagram account.
Tech
The Download: spying keyboard software, and why boring AI is best
Published
1 year agoon
22 August 2023By
Terry Power
This is today’s edition of The Download, our weekday newsletter that provides a daily dose of what’s going on in the world of technology.
How ubiquitous keyboard software puts hundreds of millions of Chinese users at risk
For millions of Chinese people, the first software they download onto devices is always the same: a keyboard app. Yet few of them are aware that it may make everything they type vulnerable to spying eyes.
QWERTY keyboards are inefficient as many Chinese characters share the same latinized spelling. As a result, many switch to smart, localized keyboard apps to save time and frustration. Today, over 800 million Chinese people use third-party keyboard apps on their PCs, laptops, and mobile phones.
But a recent report by the Citizen Lab, a University of Toronto–affiliated research group, revealed that Sogou, one of the most popular Chinese keyboard apps, had a massive security loophole. Read the full story.
—Zeyi Yang
Why we should all be rooting for boring AI
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department. It hopes they could improve intelligence and operational planning.
But those might not be the right use cases, writes our senior AI reporter Melissa Heikkila. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. The DoD’s best bet is to apply generative AI to more mundane things like Excel, email, or word processing. Read the full story.
This story is from The Algorithm, Melissa’s weekly newsletter giving you the inside track on all things AI. Sign up to receive it in your inbox every Monday.
The ice cores that will let us look 1.5 million years into the past
To better understand the role atmospheric carbon dioxide plays in Earth’s climate cycles, scientists have long turned to ice cores drilled in Antarctica, where snow layers accumulate and compact over hundreds of thousands of years, trapping samples of ancient air in a lattice of bubbles that serve as tiny time capsules.
By analyzing those cores, scientists can connect greenhouse-gas concentrations with temperatures going back 800,000 years. Now, a new European-led initiative hopes to eventually retrieve the oldest core yet, dating back 1.5 million years. But that impressive feat is still only the first step. Once they’ve done that, they’ll have to figure out how they’re going to extract the air from the ice. Read the full story.
—Christian Elliott
This story is from the latest edition of our print magazine, set to go live tomorrow. Subscribe today for as low as $8/month to ensure you receive full access to the new Ethics issue and in-depth stories on experimental drugs, AI assisted warfare, microfinance, and more.
The must-reads
I’ve combed the internet to find you today’s most fun/important/scary/fascinating stories about technology.
1 How AI got dragged into the culture wars
Fears about ‘woke’ AI fundamentally misunderstand how it works. Yet they’re gaining traction. (The Guardian)
+ Why it’s impossible to build an unbiased AI language model. (MIT Technology Review)
2 Researchers are racing to understand a new coronavirus variant
It’s unlikely to be cause for concern, but it shows this virus still has plenty of tricks up its sleeve. (Nature)
+ Covid hasn’t entirely gone away—here’s where we stand. (MIT Technology Review)
+ Why we can’t afford to stop monitoring it. (Ars Technica)
3 How Hilary became such a monster storm
Much of it is down to unusually hot sea surface temperatures. (Wired $)
+ The era of simultaneous climate disasters is here to stay. (Axios)
+ People are donning cooling vests so they can work through the heat. (Wired $)
4 Brain privacy is set to become important
Scientists are getting better at decoding our brain data. It’s surely only a matter of time before others want a peek. (The Atlantic $)
+ How your brain data could be used against you. (MIT Technology Review)
5 How Nvidia built such a big competitive advantage in AI chips
Today it accounts for 70% of all AI chip sales—and an even greater share for training generative models. (NYT $)
+ The chips it’s selling to China are less effective due to US export controls. (Ars Technica)
+ These simple design rules could turn the chip industry on its head. (MIT Technology Review)
6 Inside the complex world of dissociative identity disorder on TikTok
Reducing stigma is great, but doctors fear people are self-diagnosing or even imitating the disorder. (The Verge)
7 What TikTok might have to give up to keep operating in the US
This shows just how hollow the authorities’ purported data-collection concerns really are. (Forbes)
8 Soldiers in Ukraine are playing World of Tanks on their phones
It’s eerily similar to the war they are themselves fighting, but they say it helps them to dissociate from the horror. (NYT $)
9 Conspiracy theorists are sharing mad ideas on what causes wildfires
But it’s all just a convoluted way to try to avoid having to tackle climate change. (Slate $)
10 Christie’s accidentally leaked the location of tons of valuable art
Seemingly thanks to the metadata that often automatically attaches to smartphone photos. (WP $)
Quote of the day
“Is it going to take people dying for something to move forward?”
—An anonymous air traffic controller warns that staffing shortages in their industry, plus other factors, are starting to threaten passenger safety, the New York Times reports.
The big story
Inside effective altruism, where the far future counts a lot more than the present
October 2022
Since its birth in the late 2000s, effective altruism has aimed to answer the question “How can those with means have the most impact on the world in a quantifiable way?”—and supplied methods for calculating the answer.
It’s no surprise that effective altruisms’ ideas have long faced criticism for reflecting white Western saviorism, alongside an avoidance of structural problems in favor of abstract math. And as believers pour even greater amounts of money into the movement’s increasingly sci-fi ideals, such charges are only intensifying. Read the full story.
—Rebecca Ackermann
We can still have nice things
A place for comfort, fun and distraction in these weird times. (Got any ideas? Drop me a line or tweet ’em at me.)
+ Watch Andrew Scott’s electrifying reading of the 1965 commencement address ‘Choose One of Five’ by Edith Sampson.
+ Here’s how Metallica makes sure its live performances ROCK. ($)
+ Cannot deal with this utterly ludicrous wooden vehicle.
+ Learn about a weird and wonderful new instrument called a harpejji.
Tech
Why we should all be rooting for boring AI
Published
1 year agoon
22 August 2023By
Terry Power
This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.
I’m back from a wholesome week off picking blueberries in a forest. So this story we published last week about the messy ethics of AI in warfare is just the antidote, bringing my blood pressure right back up again.
Arthur Holland Michel does a great job looking at the complicated and nuanced ethical questions around warfare and the military’s increasing use of artificial-intelligence tools. There are myriad ways AI could fail catastrophically or be abused in conflict situations, and there don’t seem to be any real rules constraining it yet. Holland Michel’s story illustrates how little there is to hold people accountable when things go wrong.
Last year I wrote about how the war in Ukraine kick-started a new boom in business for defense AI startups. The latest hype cycle has only added to that, as companies—and now the military too—race to embed generative AI in products and services.
Earlier this month, the US Department of Defense announced it is setting up a Generative AI Task Force, aimed at “analyzing and integrating” AI tools such as large language models across the department.
The department sees tons of potential to “improve intelligence, operational planning, and administrative and business processes.”
But Holland Michel’s story highlights why the first two use cases might be a bad idea. Generative AI tools, such as language models, are glitchy and unpredictable, and they make things up. They also have massive security vulnerabilities, privacy problems, and deeply ingrained biases.
Applying these technologies in high-stakes settings could lead to deadly accidents where it’s unclear who or what should be held responsible, or even why the problem occurred. Everyone agrees that humans should make the final call, but that is made harder by technology that acts unpredictably, especially in fast-moving conflict situations.
Some worry that the people lowest on the hierarchy will pay the highest price when things go wrong: “In the event of an accident—regardless of whether the human was wrong, the computer was wrong, or they were wrong together—the person who made the ‘decision’ will absorb the blame and protect everyone else along the chain of command from the full impact of accountability,” Holland Michel writes.
The only ones who seem likely to face no consequences when AI fails in war are the companies supplying the technology.
It helps companies when the rules the US has set to govern AI in warfare are mere recommendations, not laws. That makes it really hard to hold anyone accountable. Even the AI Act, the EU’s sweeping upcoming regulation for high-risk AI systems, exempts military uses, which arguably are the highest-risk applications of them all.
While everyone is looking for exciting new uses for generative AI, I personally can’t wait for it to become boring.
Amid early signs that people are starting to lose interest in the technology, companies might find that these sorts of tools are better suited for mundane, low-risk applications than solving humanity’s biggest problems.
Applying AI in, for example, productivity software such as Excel, email, or word processing might not be the sexiest idea, but compared to warfare it’s a relatively low-stakes application, and simple enough to have the potential to actually work as advertised. It could help us do the tedious bits of our jobs faster and better.
Boring AI is unlikely to break as easily and, most important, won’t kill anyone. Hopefully, soon we’ll forget we’re interacting with AI at all. (It wasn’t that long ago when machine translation was an exciting new thing in AI. Now most people don’t even think about its role in powering Google Translate.)
That’s why I’m more confident that organizations like the DoD will find success applying generative AI in administrative and business processes.
Boring AI is not morally complex. It’s not magic. But it works.
Deeper Learning
AI isn’t great at decoding human emotions. So why are regulators targeting the tech?
Amid all the chatter about ChatGPT, artificial general intelligence, and the prospect of robots taking people’s jobs, regulators in the EU and the US have been ramping up warnings against AI and emotion recognition. Emotion recognition is the attempt to identify a person’s feelings or state of mind using AI analysis of video, facial images, or audio recordings.
But why is this a top concern? Western regulators are particularly concerned about China’s use of the technology, and its potential to enable social control. And there’s also evidence that it simply does not work properly. Tate Ryan-Mosley dissected the thorny questions around the technology in last week’s edition of The Technocrat, our weekly newsletter on tech policy.
Bits and Bytes
Meta is preparing to launch free code-generating software
A version of its new LLaMA 2 language model that is able to generate programming code will pose a stiff challenge to similar proprietary code-generating programs from rivals such as OpenAI, Microsoft, and Google. The open-source program is called Code Llama, and its launch is imminent, according to The Information. (The Information)
OpenAI is testing GPT-4 for content moderation
Using the language model to moderate online content could really help alleviate the mental toll content moderation takes on humans. OpenAI says it’s seen some promising first results, although the tech does not outperform highly trained humans. A lot of big, open questions remain, such as whether the tool can be attuned to different cultures and pick up context and nuance. (OpenAI)
Google is working on an AI assistant that offers life advice
The generative AI tools could function as a life coach, offering up ideas, planning instructions, and tutoring tips. (The New York Times)
Two tech luminaries have quit their jobs to build AI systems inspired by bees
Sakana, a new AI research lab, draws inspiration from the animal kingdom. Founded by two prominent industry researchers and former Googlers, the company plans to make multiple smaller AI models that work together, the idea being that a “swarm” of programs could be as powerful as a single large AI model. (Bloomberg)