Connect with us

Health

Pregnant Or Worried About Infertility? Get Vaccinated Against COVID-19

Published

on

Pregnant Or Worried About Infertility? Get Vaccinated Against COVID-19


As the delta variant of SARS-CoV-2 surges across the U.S., almost 1 in 5 Americans continue to resist getting shots that are widely available, safe and effective – particularly for preventing the most severe outcomes of the virus.

While people have many different justifications for not getting the shot, one particularly insidious bit of pseudoscience has surfaced. It is routinely invoked in the contentious debate over vaccine policy in the U.S. and continues to stir confusion and skepticism toward vaccines in young women across the globe.

This misinformed argument reasons that the coronavirus vaccines could affect fertility in women by mistakenly triggering the creation of antibodies that react with an important placental protein called syncytin-1. This protein contains minor similarities to the coronavirus spike protein used in all current COVID-19 vaccines. Thus, the false narrative goes, the immune system will not be able to differentiate between the two and will create antibodies that interfere with proper development of the placenta.

This argument lacks understanding of how the immune system does its job.

As an immunologist who studies COVID-19 infection and the ways it can cause the immune system to turn against itself, this misunderstanding comes up frequently in my conversations with friends, family members and even medical workers who are legitimately concerned about their health and their future ability to have children.

It is completely understandable to have questions about how a new vaccine might affect reproductive health. But the science is clear that getting vaccinated does not put women at risk for infertility. It protects women, their unborn children and their families from a serious disease that, ironically, could in fact affect fertility in men.

Antibodies rarely make mistakes

The immune system is an immensely complicated network of cells, tissues and proteins that interact with one another – and the outside world. It works to maintain a balanced, healthy environment so the rest of the cells in the body can do their jobs. Among other things, the immune system helps direct fetal development, oversees and manages the microbes that aid in digestion and, of course, fights off infection.

One of the immune system’s most critical jobs is to differentiate between the body’s own cells and those of outside invaders to prevent accidental attacks on itself. In immunology, this careful selection of responses is called “immune tolerance.” People whose immune systems fail to maintain this tolerance and instead attack their own cells and tissues are diagnosed with autoimmune disorders. These can range in symptoms and severity depending on the tissue being attacked. An example is rheumatoid arthritis – a misdirected antibody attack on soft tissue in the joints.

 

The immune system has a series of checks and balances that are intended to prevent such autoimmune attacks. When B-cells – the cells in the immune system that produce antibodies – are first “born,” they carefully screen themselves to make sure that they won’t target the body’s own organs. That self-screening continues as B-cells patrol the body looking for an infection to fight; if they find something potentially threatening, like a vaccine, they engage in a highly orchestrated dance with other immune cells. Through that weeks-long process, only B-cells that produce antibodies against the outside invader survive. B-cells with self-destructive potential are killed.

Importantly, in parts of the body where it is absolutely critical that the immune system not mistakenly turn on its own cells – such as a developing placenta or in the brain – the entire region is immunosuppressive. This means that the threshold for activating the body’s immune response in those areas is set at an even higher bar.

This is not emerging science. These are well-established concepts among immunology experts. and have been for almost a half-century. As a result, it was not particularly noteworthy that a new preliminary study of women with fully developed immune responses against coronavirus showed no activity against the placental protein syncytin-1. Another study unsurprisingly demonstrated that the vaccine does not damage the placenta.

COVID-19 is the real threat to the immune system

It is important to remember that the COVID-19 vaccines authorized – and in the case of Pfizer-BioNTech, fully approved – in the U.S. carry the instructions to make the same spike protein that the virus uses to force its way into cells. Regardless of whether a person is infected with COVID-19 or receives a vaccine that emulates part of the virus, the immune system will respond aggressively to the spike protein that the body sees as foreign. Study after study confirm that in people who contract the virus, the majority of the immune response is directed at the spike protein.

However, there is one critical difference between vaccination and infection.

When you get vaccinated, your immune system has the time to respond under relatively low-risk circumstances. In other words, the immune system senses a threat and begins to build up its arsenal without rushing. But when it is confronted with a severe infection, the immune system recruits every weapon it has, as quickly as possible, to fend off severe infection or death.

This is important because we now know that under the severe stress of fighting COVID-19, the immune system fires up an emergency response pathway and begins producing antibodies that are not well selected. Many of these antibodies will target the virus, but our work now under review and others’ published findings confirm that in more than half of severe patients, a large number of antibodies also target their own cells.

Simply put: The danger of this kind of “auto-reactivity” in COVID-19 doesn’t come from responding against the spike protein in a vaccine – it occurs when the body has to fight a real COVID-19 infection.

Getting vaccinated protects unborn children

Getting vaccinated costs people a couple of days of not feeling 100%. In return, it provides protection from contracting a serious disease with the potential to cause serious illness or death. Being vaccinated also gives crossover protection to an unborn child.

COVID-19 infection, on the other hand, puts pregnant women at risk of severe disease, pregnancy complications and death. It may also affect a couple’s ability to have children by decreasing a man’s sperm counts and causing erectile dysfunction.

The science is clear, but for me this is also deeply personal. My wife was vaccinated in March, and we are expecting a baby in December. We are both deeply grateful for a vaccine that has given us the confidence to support a healthy pregnancy in the midst of a pandemic.

Matthew Woodruff, Instructor of Human Immunology, Emory University

This article is republished from The Conversation under a Creative Commons license. Read the original article.





Source link

Health

Feeling Tired All The Time? Possible Causes And Solutions

Published

on

tired office worker


Long days of work, lack of sleep, and stress at the office can be the most common factors that make you feel tired. However, feeling “tired all the time” (TATT) without known reasons can be an indication of an underlying health issue that needs immediate attention.

Finding the exact cause of the lingering tiredness can be the first step toward solving the symptom.

Health conditions that cause fatigue:

1. Anemia – Anemia is one of the most common causes of fatigue. A person who has anemia does not have enough red blood cells in the body, causing symptoms such as tiredness, dizziness, feeling cold and crankiness.

Most often, anemia is caused by iron deficiency. Hence, the condition can be best resolved by including iron-rich foods in the diet and use of iron supplements.

2. Sleep Apnea – It causes the body to stop breathing momentarily during sleep. The condition can affect the quality of sleep and hence make you feel fatigued.

For milder cases of sleep apnea, lifestyle changes such as losing weight or quitting smoking can help solve the sleep disorder. In more severe cases where there is an obstruction in breathing, surgeries and therapies can help.

3. Diabetes – A person who has diabetes has changes in blood sugar level, which can cause fatigue. A patient who is already on diabetic medication can also experience tiredness as a side effect of the medication.

Early identification and taking the correct treatment is the key to managing diabetes. Losing extra weight and having a healthy diet also help in the treatment.

4. Thyroid – Thyroid diseases can be due to an overactive or an underactive thyroid gland. In people who have an underactive thyroid (hypothyroidism), the metabolism slows down leading to symptoms such as lethargy and fatigue. In people with an overactive thyroid (hyperthyroidism), the metabolism speeds up leading to fatigue and difficulty sleeping.

Right diet and lifestyle choices, along with medications, can help in thyroid management.

5. Infections – A person can show symptoms of fatigue when the body is fighting a viral or bacterial infection. Infections ranging from the flu to HIV can cause tiredness.

Along with fatigue, other symptoms such as fever, headache, body aches, shortness of breath and appetite loss can also accompany the infection. Treating the symptoms and taking adequate rest helps in faster recovery.

6. Food allergies – Fatigue may be an early warning sign of hidden food allergies and autoimmune disorders such as celiac disease. Identifying the allergen using a food allergy test or through an elimination diet can help in allergy treatment.

7. Heart disease – If you feel exhausted from an activity that used to be easy, then it is good to check your heart health, as fatigue can be an indication of underlying heart disease.

8. Depression/ anxiety – Fatigue can also be an indicator of a mental health disorder such as depression or anxiety. A combination of medication and psychotherapy can help relieve symptoms.

Lifestyle causes

Apart from serious health conditions, certain lifestyle habits such as dehydration, poor diet, stress and insufficient sleep can cause exhaustion. Having a well-balanced diet, regular exercise and routine sleep can help solve fatigue caused by lifestyle habits.

Published by Medicaldaily.com



Source link

Continue Reading

Health

How To Overcome Your Sleep Debt And Reclaim Energy

Published

on

woman-2197947_1920


Picture this: you’re burning the midnight oil, studying or binge-watching your favorite shows, all at the expense of a good night’s sleep. Have you ever stopped to think about the toll it takes on your body and mind? The consequences can be more serious than you might realize.

Not getting enough sleep can translate into a multitude of issues, including weight gain, lack of focus, tiredness, a haze of confusion, and even depression. If you too are encountering similar issues lately then chances are you have a sleep debt.

Wondering what is sleep debt?

People from 13-18 years of age need 8 hours of sleep, whilst adults beyond that age will require at least 7 hours of snooze.

Sleep debt is a collection of the total hours you haven’t slept or traded your sleep for something else. Sleep debt keeps piling up as a person falls short of the total hours of sleep recommended for an adult, according to the Centers for Disease Control and Prevention.

And when you keep letting go of your sleep for other activities, the body adapts to the new normal and effects start to reflect on the energy levels, which deplete.

“However, like every other debt out there, this too has a repayment option,” Dr. Kunal Kumar, medical director of the Sleep Center at Einstein Medical Center in Philadelphia, told Livestrong.

Below are some expert-vetted ways you can pay back the sleep debt. (Courtesy: Livestrong and Sleepfoundation)

Just like financial debt, imagine sleep debt as a debt you owe to your body. It needs to be repaid. The good news is that catching up on sleep is indeed possible.

  • Maintain a set sleep schedule: Overhauling the sleep schedule is a pretty difficult task to achieve, and it’s best to do that gradually. Create a set sleep schedule by making some small changes to your routine. Instead of making abrupt shifts in your bedtime or wake-up time, adjust them gradually by 15 to 30-minute increments.
  • Minimize your gadget usage: Wind down activities and minimize electronic usage before bed to promote better sleep. Relax and prepare for quality sleep by dimming the lights and setting an alarm for 30 minutes to an hour before bed.
  • Reshuffle your sleeping arrangements: Are you finding it hard to get a good night’s sleep due to excessive sweating? Well, here’s a handy solution: consider upgrading to a cooling mattress or opting for cooling sheets. These innovative sleep essentials can help regulate your body temperature, and keep you comfortably cool throughout the night, ensuring a more blissful slumber. Memory foam pillows can work wonders in relieving neck and back discomfort in case you are struggling with backache.
  • Improve the bedroom environment: Create a sleep-friendly bedroom environment by adjusting the temperature for comfort, and blocking out disruptive lights, or noises that might disturb your restful slumber. And if your mattress, pillow, or sheets are worn out or no longer providing the support you need, consider treating yourself to new ones.

Published by Medicaldaily.com



Source link

Continue Reading

Health

Omega-3 Fatty Acids Slow The Progression Of Amyotrophic Lateral Sclerosis: Study

Published

on

walnuts-552975_1920


Omega-3 fatty acids are known for a range of health benefits, from promoting brain and heart health to reducing inflammation and protection against several chronic conditions.

In a new study, researchers found that omega-3 acids, especially the type found in foods like flaxseeds, walnuts, chia seeds, canola oil and soybean oil, can slow down the progression of amyotrophic lateral sclerosis (ALS).

It is a debilitating nervous system disease that gradually worsens over time and can be fatal. The condition results in a loss of muscle control and affects the nerve cells in the brain and spinal cord. It is also known as Lou Gehrig’s disease after the baseball player who was diagnosed with it.

The initial symptoms of the disease include muscle weakness, difficulty in walking and hand movements. The symptoms can slowly progress to difficulties with chewing, swallowing, speaking and breathing.

The exact cause of ALS is not known. However, around 10% of people get it from a risk gene passed down from a family member. It is estimated that more than 32,000 people in the U.S. live with the condition.

In the latest study, researchers from Harvard T.H. Chan School of Public Health in Massachusetts evaluated 449 people living with ALS in a clinical trial. The team assessed the severity of their symptoms, the progression of their disease, along with the levels of omega-3 fatty acids in their blood, for 18 months.

The study suggested that alpha-linolenic acid (ALA), a type of omega-3 found in plants, is particularly beneficial in slowing the progression of ALS. The participants with the highest levels of ALA had a 50% reduced risk of death during the study period compared to those with the lowest levels of ALA.

Researchers also found a reduction in death risk in participants who had eicosapentaenoic acid, the type of omega-3 fatty acid found in fatty fish and fish oil, and linoleic acid found in vegetable oils, nuts and seeds.

A previous study conducted by the same team suggested that a diet high in ALA and higher blood levels of the nutrient could reduce the risk of developing the condition.

“In this study, we found that among people living with ALS, higher blood levels of ALA were also associated with a slower disease progression and a lower risk of death within the study period. These findings, along with our previous research suggest that this fatty acid may have neuroprotective effects that could benefit people with ALS,” said Kjetil Bjornevik, the lead author of the study.

Published by Medicaldaily.com



Source link

Continue Reading

Copyright © 2021 Vitamin Patches Online.