Connect with us

Health

Do Naturally High Testosterone Levels Equal Stronger Female Athletic Performance? Not Necessarily

Published

on

Do Naturally High Testosterone Levels Equal Stronger Female Athletic Performance? Not Necessarily


Over the past few years, controversy has surrounded the World Athletics ruling that female hyperandrogenic athletes — female athletes with naturally high levels of testosterone — are banned from competing in certain track events.

The controversy is perhaps best exemplified by the case of South African runner Caster Semenya.

This rule is based on the hypothesis that total testosterone levels directly determine athletic performance in females. But our new research challenges this assumption.

Remind me, what’s the controversy about?

Testosterone is the major androgenic (male) hormone and one of the most common doping agents. Athletes who participate in strength and power-based sports, including bodybuilding, athletics, wrestling and cycling, have used testosterone for decades for its muscle-building properties.

Contemporary anti-doping tests can detect and distinguish between the presence of pharmaceutical (“exogenous”) testosterone and natural (“endogenous”) testosterone with a high level of certainty. The presence of exogenous testosterone is essential to return a positive result.

However, some people, males and females, present with high levels of natural testosterone without having ever taken androgenic hormones. These people are “hyperandrogenic.”

Male athletes with naturally occurring high testosterone levels can compete normally. In contrast, female hyperandrogenic athletes are at the center of a controversy of sporting regulations.

Because their natural blood testosterone concentrations are above an arbitrary threshold of five nanomoles of testosterone per liter (nmol/L), hyperandrogenic females are banned from competing in a series of World Athletics events ranging from 400m to the mile.

They can only compete if they choose to take anti-androgen drugs to reduce their testosterone levels.

How does testosterone enhance performance?

Testosterone acts on muscle cells by binding to a specific receptor protein, the androgen receptor. Upon testosterone binding, the androgen receptor signals to the muscle cell to activate the pathways that trigger an increase in muscle mass, called muscle hypertrophy. As a result, the muscle grows and becomes stronger.

But let’s look at what happens when testosterone can’t perform its job in the muscle. “Androgen receptor knockout mice” are genetically modified mice that do not produce this receptor. When compared to normal male mice, male androgen receptor knockout mice lose up to 20% of their muscle mass and strength. This makes sense since testosterone doesn’t have a receptor to bind to anymore.

Surprisingly though, this doesn’t happen in female mice. Female androgen receptor knockout mice are as strong and muscular as their control counterparts. This suggests testosterone may not be necessary to reach peak muscle mass and strength in females.

Our new human data align with this hypothesis. We used a large, publicly available database and showed total testosterone levels were not associated with muscle mass or strength in 716 pre-menopausal females.

This is in contrast to males, where higher testosterone concentrations are associated with increased muscle mass and strength.

We’re also doing experimental research on this topic. We’ve recruited 14 young female volunteers with natural testosterone levels along a spectrum from low to hyperandrogenic.

Although this part of our research is not yet published in a peer-reviewed journal, our results so far appear to confirm the findings from the epidemiological data. We’ve found testosterone levels don’t correlate with thigh muscle size, strength and power even after 12 weeks of resistance training aimed at maximising muscle mass and building strength.

Our laboratory-based study allows us to tightly control for external factors that may influence muscle mass and strength, such as diet, sleep, training status and menstrual cycle.

Why mightn’t testosterone enhance athletic performance in females?

Previous research suggests the female sex hormones estrogen and progesterone may take over some of the muscle-building role of testosterone in young females.

Another important consideration is natural testosterone exists in two forms: “free” within the bloodstream, or “bound” to a protein that reduces its capacity to signal to the muscle. Our research suggests “free” testosterone has the greater role in regulating female muscle mass and performance.

Unfortunately, the current World Athletics rules are based on the total testosterone pool (the sum of “free” and “bound” testosterone).

A limitation of our studies is most of our participants would not be classified as hyperandrogenic according to World Athletics. Past a certain threshold, testosterone may have a different effect on female muscle physiology.

A recent study tested this hypothesis by administering pharmaceutical testosterone to females to approach the 5nmol/L threshold. After ten weeks of this treatment, the authors found the volunteers receiving testosterone had gained more muscle mass and could run for longer on a treadmill before becoming exhausted compared to the volunteers who didn’t receive testosterone.

Surprisingly though, there was no between-group difference in muscle power, muscle strength, explosive power (sprinting) and the maximum rate of oxygen consumption measured during exercise, which is the best indicator of cardiorespiratory fitness.

All these parameters are important for short- and middle-distance track events. These findings support our hypothesis that total testosterone isn’t a direct determinant of muscle strength and performance in females, and reiterates the need to challenge the World Athletics rules.

What now?

Our research is important as it fights for the right of a cohort of naturally gifted female athletes to compete in their chosen athletics events, despite their naturally high testosterone levels.

By challenging the current assumption that “the more the better”, we hope our project will provide the building blocks for new regulations aimed at treating hyperandrogenic athletes more fairly.

Severine Lamon, Associate professor, Nutrition and Exercise Physiology, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.





Source link

Health

Feeling Tired All The Time? Possible Causes And Solutions

Published

on

tired office worker


Long days of work, lack of sleep, and stress at the office can be the most common factors that make you feel tired. However, feeling “tired all the time” (TATT) without known reasons can be an indication of an underlying health issue that needs immediate attention.

Finding the exact cause of the lingering tiredness can be the first step toward solving the symptom.

Health conditions that cause fatigue:

1. Anemia – Anemia is one of the most common causes of fatigue. A person who has anemia does not have enough red blood cells in the body, causing symptoms such as tiredness, dizziness, feeling cold and crankiness.

Most often, anemia is caused by iron deficiency. Hence, the condition can be best resolved by including iron-rich foods in the diet and use of iron supplements.

2. Sleep Apnea – It causes the body to stop breathing momentarily during sleep. The condition can affect the quality of sleep and hence make you feel fatigued.

For milder cases of sleep apnea, lifestyle changes such as losing weight or quitting smoking can help solve the sleep disorder. In more severe cases where there is an obstruction in breathing, surgeries and therapies can help.

3. Diabetes – A person who has diabetes has changes in blood sugar level, which can cause fatigue. A patient who is already on diabetic medication can also experience tiredness as a side effect of the medication.

Early identification and taking the correct treatment is the key to managing diabetes. Losing extra weight and having a healthy diet also help in the treatment.

4. Thyroid – Thyroid diseases can be due to an overactive or an underactive thyroid gland. In people who have an underactive thyroid (hypothyroidism), the metabolism slows down leading to symptoms such as lethargy and fatigue. In people with an overactive thyroid (hyperthyroidism), the metabolism speeds up leading to fatigue and difficulty sleeping.

Right diet and lifestyle choices, along with medications, can help in thyroid management.

5. Infections – A person can show symptoms of fatigue when the body is fighting a viral or bacterial infection. Infections ranging from the flu to HIV can cause tiredness.

Along with fatigue, other symptoms such as fever, headache, body aches, shortness of breath and appetite loss can also accompany the infection. Treating the symptoms and taking adequate rest helps in faster recovery.

6. Food allergies – Fatigue may be an early warning sign of hidden food allergies and autoimmune disorders such as celiac disease. Identifying the allergen using a food allergy test or through an elimination diet can help in allergy treatment.

7. Heart disease – If you feel exhausted from an activity that used to be easy, then it is good to check your heart health, as fatigue can be an indication of underlying heart disease.

8. Depression/ anxiety – Fatigue can also be an indicator of a mental health disorder such as depression or anxiety. A combination of medication and psychotherapy can help relieve symptoms.

Lifestyle causes

Apart from serious health conditions, certain lifestyle habits such as dehydration, poor diet, stress and insufficient sleep can cause exhaustion. Having a well-balanced diet, regular exercise and routine sleep can help solve fatigue caused by lifestyle habits.

Published by Medicaldaily.com



Source link

Continue Reading

Health

How To Overcome Your Sleep Debt And Reclaim Energy

Published

on

woman-2197947_1920


Picture this: you’re burning the midnight oil, studying or binge-watching your favorite shows, all at the expense of a good night’s sleep. Have you ever stopped to think about the toll it takes on your body and mind? The consequences can be more serious than you might realize.

Not getting enough sleep can translate into a multitude of issues, including weight gain, lack of focus, tiredness, a haze of confusion, and even depression. If you too are encountering similar issues lately then chances are you have a sleep debt.

Wondering what is sleep debt?

People from 13-18 years of age need 8 hours of sleep, whilst adults beyond that age will require at least 7 hours of snooze.

Sleep debt is a collection of the total hours you haven’t slept or traded your sleep for something else. Sleep debt keeps piling up as a person falls short of the total hours of sleep recommended for an adult, according to the Centers for Disease Control and Prevention.

And when you keep letting go of your sleep for other activities, the body adapts to the new normal and effects start to reflect on the energy levels, which deplete.

“However, like every other debt out there, this too has a repayment option,” Dr. Kunal Kumar, medical director of the Sleep Center at Einstein Medical Center in Philadelphia, told Livestrong.

Below are some expert-vetted ways you can pay back the sleep debt. (Courtesy: Livestrong and Sleepfoundation)

Just like financial debt, imagine sleep debt as a debt you owe to your body. It needs to be repaid. The good news is that catching up on sleep is indeed possible.

  • Maintain a set sleep schedule: Overhauling the sleep schedule is a pretty difficult task to achieve, and it’s best to do that gradually. Create a set sleep schedule by making some small changes to your routine. Instead of making abrupt shifts in your bedtime or wake-up time, adjust them gradually by 15 to 30-minute increments.
  • Minimize your gadget usage: Wind down activities and minimize electronic usage before bed to promote better sleep. Relax and prepare for quality sleep by dimming the lights and setting an alarm for 30 minutes to an hour before bed.
  • Reshuffle your sleeping arrangements: Are you finding it hard to get a good night’s sleep due to excessive sweating? Well, here’s a handy solution: consider upgrading to a cooling mattress or opting for cooling sheets. These innovative sleep essentials can help regulate your body temperature, and keep you comfortably cool throughout the night, ensuring a more blissful slumber. Memory foam pillows can work wonders in relieving neck and back discomfort in case you are struggling with backache.
  • Improve the bedroom environment: Create a sleep-friendly bedroom environment by adjusting the temperature for comfort, and blocking out disruptive lights, or noises that might disturb your restful slumber. And if your mattress, pillow, or sheets are worn out or no longer providing the support you need, consider treating yourself to new ones.

Published by Medicaldaily.com



Source link

Continue Reading

Health

Omega-3 Fatty Acids Slow The Progression Of Amyotrophic Lateral Sclerosis: Study

Published

on

walnuts-552975_1920


Omega-3 fatty acids are known for a range of health benefits, from promoting brain and heart health to reducing inflammation and protection against several chronic conditions.

In a new study, researchers found that omega-3 acids, especially the type found in foods like flaxseeds, walnuts, chia seeds, canola oil and soybean oil, can slow down the progression of amyotrophic lateral sclerosis (ALS).

It is a debilitating nervous system disease that gradually worsens over time and can be fatal. The condition results in a loss of muscle control and affects the nerve cells in the brain and spinal cord. It is also known as Lou Gehrig’s disease after the baseball player who was diagnosed with it.

The initial symptoms of the disease include muscle weakness, difficulty in walking and hand movements. The symptoms can slowly progress to difficulties with chewing, swallowing, speaking and breathing.

The exact cause of ALS is not known. However, around 10% of people get it from a risk gene passed down from a family member. It is estimated that more than 32,000 people in the U.S. live with the condition.

In the latest study, researchers from Harvard T.H. Chan School of Public Health in Massachusetts evaluated 449 people living with ALS in a clinical trial. The team assessed the severity of their symptoms, the progression of their disease, along with the levels of omega-3 fatty acids in their blood, for 18 months.

The study suggested that alpha-linolenic acid (ALA), a type of omega-3 found in plants, is particularly beneficial in slowing the progression of ALS. The participants with the highest levels of ALA had a 50% reduced risk of death during the study period compared to those with the lowest levels of ALA.

Researchers also found a reduction in death risk in participants who had eicosapentaenoic acid, the type of omega-3 fatty acid found in fatty fish and fish oil, and linoleic acid found in vegetable oils, nuts and seeds.

A previous study conducted by the same team suggested that a diet high in ALA and higher blood levels of the nutrient could reduce the risk of developing the condition.

“In this study, we found that among people living with ALS, higher blood levels of ALA were also associated with a slower disease progression and a lower risk of death within the study period. These findings, along with our previous research suggest that this fatty acid may have neuroprotective effects that could benefit people with ALS,” said Kjetil Bjornevik, the lead author of the study.

Published by Medicaldaily.com



Source link

Continue Reading

Copyright © 2021 Vitamin Patches Online.